Home
Class 12
MATHS
Choose the correct Answer of the Followi...

Choose the correct Answer of the Following Questions : `int_0^(pi/2) (sinx dx)/(sinx + cosx)=`

A

`pi`

B

`pi/2`

C

`pi/4`

D

`pi/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx \), we will use a symmetry property of definite integrals. Here’s the step-by-step solution: ### Step 1: Set up the integral Let \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx \] ### Step 2: Use the substitution \( x = \frac{\pi}{2} - x \) We will apply the substitution \( x = \frac{\pi}{2} - t \), which implies \( dx = -dt \). When \( x = 0 \), \( t = \frac{\pi}{2} \) and when \( x = \frac{\pi}{2} \), \( t = 0 \). Therefore, we have: \[ I = \int_{\frac{\pi}{2}}^0 \frac{\sin\left(\frac{\pi}{2} - t\right)}{\sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right)} (-dt) \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos t}{\cos t + \sin t} \, dt \] ### Step 3: Rewrite the integral Now, we can express \( I \) in terms of the new variable \( t \): \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} \, dx \] ### Step 4: Add the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx \) 2. \( I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} \, dx \) Adding these two integrals: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{\sin x}{\sin x + \cos x} + \frac{\cos x}{\sin x + \cos x} \right) dx \] ### Step 5: Simplify the integrand The integrand simplifies to: \[ \frac{\sin x + \cos x}{\sin x + \cos x} = 1 \] Thus, we have: \[ 2I = \int_0^{\frac{\pi}{2}} 1 \, dx \] ### Step 6: Evaluate the integral Now, we can evaluate the integral: \[ 2I = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Step 7: Solve for \( I \) Dividing both sides by 2 gives: \[ I = \frac{\pi}{4} \] ### Conclusion Thus, the value of the integral is: \[ \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|21 Videos
  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos

Similar Questions

Explore conceptually related problems

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/sqrt(1 + cosx) is equal to

Choose the correct Answer of the Following Questions : int_0^(pi/4) e^x sinx dx =

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx /(2+cosx)=

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

int_(0)^(pi//2) (sin x) / ((sinx + cosx)^(2) ) dx =

int_(0)^(pi//2) (sin x) / ((sinx + cosx)^(3) ) dx =

int_0^(pi/2) cosx/(1+sinx)dx

int(sinx)/(sinx-cosx)dx=

Evaluate int_0^(pi/2) sinx/(sinx + cosx) dx

int_0^(pi/2) (Cosx - Sinx)dx

MAHAVEER PUBLICATION-DEFINITE INTEGRAL-QUESTION BANK
  1. Choose the correct Answer of the Following Questions : int0^e logx dx=

    Text Solution

    |

  2. Choose the correct Answer of the Following Questions : int0^sqrt3 dx/(...

    Text Solution

    |

  3. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  4. Choose the correct Answer of the Following Questions : int0^(pi/2) dx/...

    Text Solution

    |

  5. Choose the correct Answer of the Following Questions : int0^pi dx/(a +...

    Text Solution

    |

  6. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  7. Choose the correct Answer of the Following Questions : int0^infty e^(-...

    Text Solution

    |

  8. fill in the blanks. int2^3sqrtx/(sqrt(5-x)+sqrtx)dx=.

    Text Solution

    |

  9. Evaluate each of the following integral: int0^(pi//2)cos^2x\ dx

    Text Solution

    |

  10. Choose the correct Answer of the Following Questions : int0^2 sqrt(4-x...

    Text Solution

    |

  11. Choose the correct Answer of the Following Questions : int0^(1/2) -1/...

    Text Solution

    |

  12. Choose the correct Answer of the Following Questions : int0^(pi/4) e^...

    Text Solution

    |

  13. Evaluate the following : int(0)^(pi//2)(sinx)/(sinx+cosx)dx

    Text Solution

    |

  14. Find the Definite Integrals : int0^1 dx /sqrt(4-x^2)

    Text Solution

    |

  15. Find the Definite Integrals : int0^(pi/4) (sec^2xdx) /(1 + tan^2x)

    Text Solution

    |

  16. Find the Definite Integrals : int-(pi/4)^0 e^(tanx) sec^2 x dx

    Text Solution

    |

  17. Find the Definite Integrals : int1^2 dx /x(1+logx)^2

    Text Solution

    |

  18. Find the Definite Integrals : int0^1 x^2 e^x dx

    Text Solution

    |

  19. Find the Definite Integrals : int0^(pi/2) sin^2x cos^3x dx

    Text Solution

    |

  20. int0^(pi/2) cosx/(1+sinx)dx

    Text Solution

    |