Home
Class 12
MATHS
Choose the correct Answer of the Followi...

Choose the correct Answer of the Following Questions : `int_0^(pi/2) dx/(1 + tanx)`

A

`pi`

B

`pi/3`

C

`pi/2`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \tan x} \), we can use a property of definite integrals. ### Step 1: Set up the integral Let \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \tan x} \] ### Step 2: Use the substitution \( x = \frac{\pi}{2} - t \) We can use the substitution \( x = \frac{\pi}{2} - t \). Then, \( dx = -dt \) and when \( x = 0 \), \( t = \frac{\pi}{2} \) and when \( x = \frac{\pi}{2} \), \( t = 0 \). Thus, we have: \[ I = \int_{\frac{\pi}{2}}^0 \frac{-dt}{1 + \tan\left(\frac{\pi}{2} - t\right)} \] ### Step 3: Simplify the integral Using the identity \( \tan\left(\frac{\pi}{2} - t\right) = \cot t \), we can rewrite the integral: \[ I = \int_{\frac{\pi}{2}}^0 \frac{-dt}{1 + \cot t} = \int_0^{\frac{\pi}{2}} \frac{dt}{1 + \cot t} \] ### Step 4: Rewrite \( \cot t \) We know that \( \cot t = \frac{1}{\tan t} \), so: \[ 1 + \cot t = 1 + \frac{1}{\tan t} = \frac{\tan t + 1}{\tan t} \] Thus: \[ \frac{1}{1 + \cot t} = \frac{\tan t}{\tan t + 1} \] ### Step 5: Substitute back into the integral Now we can substitute this back into our integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\tan t}{\tan t + 1} dt \] ### Step 6: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \tan x} \) 2. \( I = \int_0^{\frac{\pi}{2}} \frac{\tan x}{\tan x + 1} dx \) Adding these two integrals: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{1}{1 + \tan x} + \frac{\tan x}{\tan x + 1} \right) dx \] ### Step 7: Simplify the combined integral The expression simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{1 + \tan x}{1 + \tan x} dx = \int_0^{\frac{\pi}{2}} 1 \, dx \] This integral evaluates to: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} \] ### Step 8: Solve for \( I \) Thus, we have: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4} \] ### Conclusion The value of the integral \( \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \tan x} \) is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|21 Videos
  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos

Similar Questions

Explore conceptually related problems

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx /(2+cosx)=

Choose the correct Answer of the Following Questions : int_0^e logx dx=

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/(sinx + cosx)=

Choose the correct Answer of the Following Questions : int_0^(pi/4) e^x sinx dx =

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/sqrt(1 + cosx) is equal to

Choose the correct Answer of the Following Questions : int_0^sqrt3 dx/(1+x^2)=

Choose the correct Answer of the Following Questions : int_0^2 sqrt(4-x^2)dx =

Choose the correct Answer of the Following Questions : int_0^(pi/2) sqrtcosx/(sqrtcosx + sqrtsinx) dx =

MAHAVEER PUBLICATION-DEFINITE INTEGRAL-QUESTION BANK
  1. Choose the correct Answer of the Following Questions : int0^sqrt3 dx/(...

    Text Solution

    |

  2. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  3. Choose the correct Answer of the Following Questions : int0^(pi/2) dx/...

    Text Solution

    |

  4. Choose the correct Answer of the Following Questions : int0^pi dx/(a +...

    Text Solution

    |

  5. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  6. Choose the correct Answer of the Following Questions : int0^infty e^(-...

    Text Solution

    |

  7. fill in the blanks. int2^3sqrtx/(sqrt(5-x)+sqrtx)dx=.

    Text Solution

    |

  8. Evaluate each of the following integral: int0^(pi//2)cos^2x\ dx

    Text Solution

    |

  9. Choose the correct Answer of the Following Questions : int0^2 sqrt(4-x...

    Text Solution

    |

  10. Choose the correct Answer of the Following Questions : int0^(1/2) -1/...

    Text Solution

    |

  11. Choose the correct Answer of the Following Questions : int0^(pi/4) e^...

    Text Solution

    |

  12. Evaluate the following : int(0)^(pi//2)(sinx)/(sinx+cosx)dx

    Text Solution

    |

  13. Find the Definite Integrals : int0^1 dx /sqrt(4-x^2)

    Text Solution

    |

  14. Find the Definite Integrals : int0^(pi/4) (sec^2xdx) /(1 + tan^2x)

    Text Solution

    |

  15. Find the Definite Integrals : int-(pi/4)^0 e^(tanx) sec^2 x dx

    Text Solution

    |

  16. Find the Definite Integrals : int1^2 dx /x(1+logx)^2

    Text Solution

    |

  17. Find the Definite Integrals : int0^1 x^2 e^x dx

    Text Solution

    |

  18. Find the Definite Integrals : int0^(pi/2) sin^2x cos^3x dx

    Text Solution

    |

  19. int0^(pi/2) cosx/(1+sinx)dx

    Text Solution

    |

  20. Find the Definite Integrals : int0^(pi/2) dx /(2 + cosx)

    Text Solution

    |