Home
Class 12
MATHS
Choose the correct Answer of the Followi...

Choose the correct Answer of the Following Questions : `int_0^(pi/2) (sinx dx)/sqrt(1 + cosx)` is equal to

A

`2(sqrt2 + 1)`

B

`2(sqrt2 - 1)`

C

`1- sqrt2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{1 + \cos x}} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We start with the integrand \( \frac{\sin x}{\sqrt{1 + \cos x}} \). We can use trigonometric identities to simplify this expression. Recall that: - \( \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2} \) - \( 1 + \cos x = 2 \cos^2 \frac{x}{2} \) Thus, we can rewrite the integrand: \[ \frac{\sin x}{\sqrt{1 + \cos x}} = \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\sqrt{2 \cos^2 \frac{x}{2}}} \] This simplifies to: \[ \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\sqrt{2} \cos \frac{x}{2}} = \frac{2 \sin \frac{x}{2}}{\sqrt{2}} = \sqrt{2} \sin \frac{x}{2} \] ### Step 2: Rewrite the integral Now we can rewrite the integral in terms of the simplified integrand: \[ I = \int_0^{\frac{\pi}{2}} \sqrt{2} \sin \frac{x}{2} \, dx \] ### Step 3: Factor out the constant Since \( \sqrt{2} \) is a constant, we can factor it out of the integral: \[ I = \sqrt{2} \int_0^{\frac{\pi}{2}} \sin \frac{x}{2} \, dx \] ### Step 4: Perform the integration To integrate \( \sin \frac{x}{2} \), we use the formula for the integral of sine: \[ \int \sin mx \, dx = -\frac{1}{m} \cos mx + C \] Here, \( m = \frac{1}{2} \), so: \[ \int \sin \frac{x}{2} \, dx = -2 \cos \frac{x}{2} \] Now we evaluate the definite integral: \[ \int_0^{\frac{\pi}{2}} \sin \frac{x}{2} \, dx = \left[-2 \cos \frac{x}{2}\right]_0^{\frac{\pi}{2}} = -2 \left( \cos \frac{\pi}{4} - \cos 0 \right) \] Calculating the values: \[ \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \quad \cos 0 = 1 \] Thus: \[ -2 \left( \frac{1}{\sqrt{2}} - 1 \right) = -2 \left( \frac{1 - \sqrt{2}}{\sqrt{2}} \right) = \frac{2(\sqrt{2} - 1)}{\sqrt{2}} \] ### Step 5: Combine results Now substituting back into the integral: \[ I = \sqrt{2} \cdot \frac{2(\sqrt{2} - 1)}{\sqrt{2}} = 2(\sqrt{2} - 1) \] ### Final Answer Thus, the value of the integral is: \[ I = 2(\sqrt{2} - 1) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|21 Videos
  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos

Similar Questions

Explore conceptually related problems

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/(sinx + cosx)=

Choose the correct Answer of the Following Questions : int_0^(pi/4) e^x sinx dx =

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx /(2+cosx)=

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx/(1 + tanx)

Choose the correct Answer of the Following Questions : int_0^e logx dx=

Choose the correct Answer of the Following Questions : int_0^2 sqrt(4-x^2)dx =

Choose the correct Answer of the Following Questions : int_0^sqrt3 dx/(1+x^2)=

MAHAVEER PUBLICATION-DEFINITE INTEGRAL-QUESTION BANK
  1. Choose the correct Answer of the Following Questions : int0^(pi/2) dx/...

    Text Solution

    |

  2. Choose the correct Answer of the Following Questions : int0^pi dx/(a +...

    Text Solution

    |

  3. Choose the correct Answer of the Following Questions : int0^(pi/2) (si...

    Text Solution

    |

  4. Choose the correct Answer of the Following Questions : int0^infty e^(-...

    Text Solution

    |

  5. fill in the blanks. int2^3sqrtx/(sqrt(5-x)+sqrtx)dx=.

    Text Solution

    |

  6. Evaluate each of the following integral: int0^(pi//2)cos^2x\ dx

    Text Solution

    |

  7. Choose the correct Answer of the Following Questions : int0^2 sqrt(4-x...

    Text Solution

    |

  8. Choose the correct Answer of the Following Questions : int0^(1/2) -1/...

    Text Solution

    |

  9. Choose the correct Answer of the Following Questions : int0^(pi/4) e^...

    Text Solution

    |

  10. Evaluate the following : int(0)^(pi//2)(sinx)/(sinx+cosx)dx

    Text Solution

    |

  11. Find the Definite Integrals : int0^1 dx /sqrt(4-x^2)

    Text Solution

    |

  12. Find the Definite Integrals : int0^(pi/4) (sec^2xdx) /(1 + tan^2x)

    Text Solution

    |

  13. Find the Definite Integrals : int-(pi/4)^0 e^(tanx) sec^2 x dx

    Text Solution

    |

  14. Find the Definite Integrals : int1^2 dx /x(1+logx)^2

    Text Solution

    |

  15. Find the Definite Integrals : int0^1 x^2 e^x dx

    Text Solution

    |

  16. Find the Definite Integrals : int0^(pi/2) sin^2x cos^3x dx

    Text Solution

    |

  17. int0^(pi/2) cosx/(1+sinx)dx

    Text Solution

    |

  18. Find the Definite Integrals : int0^(pi/2) dx /(2 + cosx)

    Text Solution

    |

  19. Find the Definite Integrals : int0^(pi/4) sqrt(1-sin2x) dx

    Text Solution

    |

  20. Find the Definite Integrals : int0^1 logx/x^2 dx

    Text Solution

    |