Home
Class 12
MATHS
Choose the correct Answer of the Followi...

Choose the correct Answer of the Following Questions : `int_0^(pi/4) e^x sinx dx =`

A

1

B

-1/2

C

0

D

1/2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( \int_0^{\frac{\pi}{4}} e^x \sin x \, dx \), we can use the formula for the integral of the product of an exponential function and a sine function. ### Step-by-Step Solution: 1. **Identify the Integral**: We need to evaluate \( \int_0^{\frac{\pi}{4}} e^x \sin x \, dx \). 2. **Use the Formula**: The formula for the integral of \( e^{ax} \sin(bx) \) is: \[ \int e^{ax} \sin(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} \left( a \sin(bx) - b \cos(bx) \right) + C \] For our case, \( a = 1 \) and \( b = 1 \). 3. **Apply the Formula**: Substitute \( a = 1 \) and \( b = 1 \) into the formula: \[ \int e^x \sin x \, dx = \frac{e^x}{1^2 + 1^2} \left( 1 \sin x - 1 \cos x \right) + C = \frac{e^x}{2} \left( \sin x - \cos x \right) + C \] 4. **Evaluate the Definite Integral**: Now we need to evaluate: \[ \int_0^{\frac{\pi}{4}} e^x \sin x \, dx = \left[ \frac{e^x}{2} (\sin x - \cos x) \right]_0^{\frac{\pi}{4}} \] 5. **Calculate the Upper Limit**: First, evaluate at \( x = \frac{\pi}{4} \): \[ = \frac{e^{\frac{\pi}{4}}}{2} \left( \sin \frac{\pi}{4} - \cos \frac{\pi}{4} \right) = \frac{e^{\frac{\pi}{4}}}{2} \left( \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = \frac{e^{\frac{\pi}{4}}}{2} \cdot 0 = 0 \] 6. **Calculate the Lower Limit**: Now evaluate at \( x = 0 \): \[ = \frac{e^0}{2} \left( \sin 0 - \cos 0 \right) = \frac{1}{2} (0 - 1) = -\frac{1}{2} \] 7. **Combine the Results**: Now subtract the two results: \[ \int_0^{\frac{\pi}{4}} e^x \sin x \, dx = 0 - \left(-\frac{1}{2}\right) = \frac{1}{2} \] ### Final Answer: Thus, the value of the definite integral \( \int_0^{\frac{\pi}{4}} e^x \sin x \, dx \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|21 Videos
  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos

Similar Questions

Explore conceptually related problems

Choose the correct Answer of the Following Questions : int_0^e logx dx=

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx /(2+cosx)=

Choose the correct Answer of the Following Questions : int_0^(pi/2) dx/(1 + tanx)

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/(sinx + cosx)=

Choose the correct Answer of the Following Questions : int_0^(pi/2) (sinx dx)/sqrt(1 + cosx) is equal to

Choose the correct Answer of the Following Questions : int_0^2 sqrt(4-x^2)dx =