Home
Class 12
MATHS
Using the properties of definite integra...

Using the properties of definite integral Evaluate : `int_0^(pi/2) sinx /(sinx + cosx) dx `

Text Solution

AI Generated Solution

To evaluate the definite integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx \), we can use the properties of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY OF A FUNCTION

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|21 Videos
  • DETERMINANTS

    MAHAVEER PUBLICATION|Exercise QUESTION BANK|51 Videos

Similar Questions

Explore conceptually related problems

Using the properties of definite integral Evaluate : int_0^(pi) (xtanx)/(1 + sinx) dx

Evaluate: int_0^(pi/2) sin^2x/(sinx+cosx)dx

Evaluate int_0^(pi/2) sin^2x/(sinx+cosx)dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

Evaluate: int_0^(pi/2) cos^2x/(2+sinx+cosx)dx

Using the properties of definite integral,show that int_0^(pi/2) log tanx dx = 0

Evaluate: int_0^(pi//2) e^x (sinx-cosx) dx

Evaluate int_0^(pi/2) x/(sinx+cosx)dx

Evaluate int_0^(pi/2)sinx.log cosx dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx