Home
Class 12
MATHS
The index form of sqrt(((4)/(5))^(3)) is...

The index form of `sqrt(((4)/(5))^(3))` is

A

`((4)/(5))^(3//2)`

B

`((4)/(5))^(3)`

C

`((4)/(5))^(1//2)`

D

`((4)/(5))^(1//27)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER FOR CRACKING EXAM|20 Videos
  • HEIGHT AND DISTANCE

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CARCKING EXAM)|18 Videos
  • LINEAR EQUATIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|30 Videos

Similar Questions

Explore conceptually related problems

The index form of root9(((4)/(5))^(2)) is

Express the following expression in the form of a+ib((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

The square root of (7+3sqrt(5))(7-3sqrt(5)) is sqrt(5)(b)2(c)4(d)3sqrt(5)

The square root of (7+3sqrt5) (7-3sqrt5) is (A) 4 (B) sqrt5 (C) 3sqrt5 (D) 2

Express each one of the following in the standard form a+ib:((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

The domain of cos^(-1)(x^(2)-4) is (a) [3,5] (b) [-1,1][-sqrt(5),-sqrt(3)]uu[sqrt(3),sqrt(5)]-sqrt(5),-sqrt(3)]nn[-sqrt(5),sqrt(3)]

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

express in a+ib form: ((3+isqrt(5))(3-isqrt(5)))/((sqrt(3)+isqrt(2))-(sqrt(3)-isqrt(2)))

Simplest form of ((sqrt(26 - 15sqrt(3)))/(5sqrt2-sqrt(38+5sqrt3)))^2 is