Home
Class 12
MATHS
The value of sqrt(18) + sqrt(50) - sqrt(...

The value of `sqrt(18) + sqrt(50) - sqrt(32)` is

A

`4sqrt2`

B

`3sqrt2`

C

`2sqrt2`

D

`sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{18} + \sqrt{50} - \sqrt{32} \), we will simplify each square root individually and then combine the results. ### Step-by-Step Solution: 1. **Simplify \( \sqrt{18} \)**: \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \] 2. **Simplify \( \sqrt{50} \)**: \[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2} \] 3. **Simplify \( \sqrt{32} \)**: \[ \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} = 4\sqrt{2} \] 4. **Combine the results**: Now we can substitute the simplified forms back into the original expression: \[ \sqrt{18} + \sqrt{50} - \sqrt{32} = 3\sqrt{2} + 5\sqrt{2} - 4\sqrt{2} \] 5. **Combine like terms**: \[ (3 + 5 - 4)\sqrt{2} = 4\sqrt{2} \] Thus, the value of \( \sqrt{18} + \sqrt{50} - \sqrt{32} \) is \( 4\sqrt{2} \). ### Final Answer: \[ \text{The value is } 4\sqrt{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER FOR CRACKING EXAM|20 Videos
  • HEIGHT AND DISTANCE

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CARCKING EXAM)|18 Videos
  • LINEAR EQUATIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|30 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt18 + sqrt50 - sqrt32 is

If sqrt(2) = 1.414 then find the value of sqrt(8) + sqrt(50) + sqrt(72) + sqrt(98)

Find the value of sqrt(18)xx sqrt(3)

2sqrt(8)+5sqrt(32)

Given sqrt(2)=1.414. The value of sqrt(8)+2sqrt(32)-3sqrt(128)+4sqrt(50) is (a) 8.426 (b) 8.484(c)8.526 (d) 8.876

Given that sqrt(3) = 1.732, the value of (3 + sqrt(6 ))/( 5 sqrt(3) - 2 sqrt(12) - sqrt(32) + sqrt(50)) is