Home
Class 12
MATHS
IF (sqrt126xxsqrt63xxsqrt45)/(sqrt147xxs...

IF `(sqrt126xxsqrt63xxsqrt45)/(sqrt147xxsqrt243)` then the value of x is

A

`sqrt5`

B

`sqrt10`

C

10

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sqrt{126} \times \sqrt{63} \times \sqrt{45}}{\sqrt{147} \times \sqrt{243}}\) and find the value of \(x\), we will simplify each square root step by step. ### Step 1: Simplify each square root 1. **For \(\sqrt{126}\)**: \[ 126 = 9 \times 14 = 3^2 \times 14 \implies \sqrt{126} = \sqrt{9 \times 14} = \sqrt{9} \times \sqrt{14} = 3\sqrt{14} \] 2. **For \(\sqrt{63}\)**: \[ 63 = 9 \times 7 = 3^2 \times 7 \implies \sqrt{63} = \sqrt{9 \times 7} = \sqrt{9} \times \sqrt{7} = 3\sqrt{7} \] 3. **For \(\sqrt{45}\)**: \[ 45 = 9 \times 5 = 3^2 \times 5 \implies \sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5} \] 4. **For \(\sqrt{147}\)**: \[ 147 = 49 \times 3 = 7^2 \times 3 \implies \sqrt{147} = \sqrt{49 \times 3} = \sqrt{49} \times \sqrt{3} = 7\sqrt{3} \] 5. **For \(\sqrt{243}\)**: \[ 243 = 81 \times 3 = 9^2 \times 3 \implies \sqrt{243} = \sqrt{81 \times 3} = \sqrt{81} \times \sqrt{3} = 9\sqrt{3} \] ### Step 2: Substitute back into the expression Now we can substitute these simplified forms back into the original expression: \[ \frac{\sqrt{126} \times \sqrt{63} \times \sqrt{45}}{\sqrt{147} \times \sqrt{243}} = \frac{(3\sqrt{14}) \times (3\sqrt{7}) \times (3\sqrt{5})}{(7\sqrt{3}) \times (9\sqrt{3})} \] ### Step 3: Simplify the numerator and denominator 1. **Numerator**: \[ 3\sqrt{14} \times 3\sqrt{7} \times 3\sqrt{5} = 27 \sqrt{14 \times 7 \times 5} = 27 \sqrt{490} \] 2. **Denominator**: \[ (7\sqrt{3}) \times (9\sqrt{3}) = 63 \times 3 = 189 \] ### Step 4: Combine and simplify the fraction Now we have: \[ \frac{27 \sqrt{490}}{189} \] We can simplify this fraction: \[ \frac{27}{189} = \frac{1}{7} \quad \text{(since } 27 \text{ is a common factor)} \] Thus, we have: \[ \frac{\sqrt{490}}{7} \] ### Step 5: Further simplify \(\sqrt{490}\) Now, simplify \(\sqrt{490}\): \[ 490 = 49 \times 10 = 7^2 \times 10 \implies \sqrt{490} = 7\sqrt{10} \] Substituting this back gives: \[ \frac{7\sqrt{10}}{7} = \sqrt{10} \] ### Conclusion Thus, the final value is: \[ \sqrt{10} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER FOR CRACKING EXAM|20 Videos
  • HEIGHT AND DISTANCE

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CARCKING EXAM)|18 Videos
  • LINEAR EQUATIONS

    ARIHANT PUBLICATION BIHAR|Exercise EXAM BOOSTER (FOR CRACKING EXAM)|30 Videos

Similar Questions

Explore conceptually related problems

If x= (sqrt126 xx sqrt63 xx sqrt45)/(sqrt147 xx sqrt243) , then the value of x is

(96xxsqrt49)/sqrt196=8xxsqrt?

(96xxsqrt49)/(sqrt196)=?xxsqrt36

sqrt(sqrt(63)+sqrt(56))=

sqrt(26)xxsqrt(6.24)xxsqrt(102)=?

sqrt(27) + sqrt(243) =

sqrt (2xxsqrt(2xxsqrt(2xxsqrt(2xx2^(42)))))