Home
Class 10
MATHS
If cot theta =7/8 Find the value of sin...

If `cot theta =7/8`
Find the value of `sin^(2) theta +cos^(2) theta ` .

A

1

B

0

C

`1/2`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the value of \( \sin^2 \theta + \cos^2 \theta \) given that \( \cot \theta = \frac{7}{8} \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding Cotangent**: \[ \cot \theta = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{7}{8} \] Here, we can assign the lengths of the sides of the triangle: - Adjacent side = 7 - Opposite side = 8 2. **Finding the Hypotenuse**: Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Adjacent}^2 + \text{Opposite}^2 \] \[ \text{Hypotenuse}^2 = 7^2 + 8^2 = 49 + 64 = 113 \] Therefore, the hypotenuse is: \[ \text{Hypotenuse} = \sqrt{113} \] 3. **Calculating Sine and Cosine**: Now we can find \( \sin \theta \) and \( \cos \theta \): \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{8}{\sqrt{113}} \] \[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{7}{\sqrt{113}} \] 4. **Finding \( \sin^2 \theta + \cos^2 \theta \)**: Now we calculate \( \sin^2 \theta + \cos^2 \theta \): \[ \sin^2 \theta = \left(\frac{8}{\sqrt{113}}\right)^2 = \frac{64}{113} \] \[ \cos^2 \theta = \left(\frac{7}{\sqrt{113}}\right)^2 = \frac{49}{113} \] Adding these two: \[ \sin^2 \theta + \cos^2 \theta = \frac{64}{113} + \frac{49}{113} = \frac{64 + 49}{113} = \frac{113}{113} = 1 \] ### Final Answer: \[ \sin^2 \theta + \cos^2 \theta = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise Example |2 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise SELF ASSESSMENT - 1 (I. Objective Type Questions:) ( [A] Multiple Choice Questions:)|3 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise CASE BASED MCQs II|5 Videos
  • INTRODUCTION TO TRIGONOMETRY

    OSWAL PUBLICATION|Exercise Self - Assessment |15 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise BOARD CORNER (LONG ANSWER TYPE QUESTION)|2 Videos

Similar Questions

Explore conceptually related problems

If cot theta =7/8 Find the value of sin theta

If cot theta =7/8 Find the Value of cot^(2) theta

If cot theta =7/8 .Find the value of cos theta

If cot theta =1//2 then find the values of sin2 theta and cos 2theta

If 5 cot theta = 3 ," find the value of "((5sin theta - 3 cos theta )/(4 sin theta + 3 cos theta)).

If 3 cot theta = 4 , find the value of (5 sin theta - 3 cos theta)/(5 sin theta + 3 cos theta) .

If cot theta=(4)/(3) , then find the value of sin theta,cos theta and cos ectheta in first quadrant. If sin theta+cos ec theta=2 then find the value of sin^(8 )theta+cos ec^(8)theta .

If cot theta=sqrt(3), find the value of (cos ec^(2)theta+cot^(2)theta)/(cos ec^(2)theta-sec^(2)theta)

If 5sin^(2)theta+3cos^(2)theta=4 . Find the value of sin theta and cos theta :

If 3cot theta=2, find the value of (4sin theta-3cos theta)/(2sin theta+6cos theta)