Home
Class 10
MATHS
If tan (A + B) = sqrt(3) and tan (A-B) =...

If tan (A + B) = `sqrt(3)` and tan (A-B) `=(1)/(sqrt(3)) A gt B`, then the value of A is ..................

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \tan(A + B) = \sqrt{3} \) 2. \( \tan(A - B) = \frac{1}{\sqrt{3}} \) ### Step 1: Identify angles from the tangent values From trigonometric values, we know: - \( \tan(60^\circ) = \sqrt{3} \) - \( \tan(30^\circ) = \frac{1}{\sqrt{3}} \) Thus, we can set up the equations based on these angles: - From \( \tan(A + B) = \sqrt{3} \), we have: \[ A + B = 60^\circ \quad \text{(Equation 1)} \] - From \( \tan(A - B) = \frac{1}{\sqrt{3}} \), we have: \[ A - B = 30^\circ \quad \text{(Equation 2)} \] ### Step 2: Solve the system of equations Now, we will add Equation 1 and Equation 2 to eliminate \( B \): \[ (A + B) + (A - B) = 60^\circ + 30^\circ \] This simplifies to: \[ 2A = 90^\circ \] Now, divide both sides by 2: \[ A = 45^\circ \] ### Step 3: Find the value of \( B \) Next, we substitute the value of \( A \) back into Equation 1 to find \( B \): \[ 45^\circ + B = 60^\circ \] Subtracting \( 45^\circ \) from both sides gives: \[ B = 15^\circ \] ### Final Answer Thus, the value of \( A \) is: \[ \boxed{45^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -I ( SECTION-B )|8 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -I ( SECTION-C )|20 Videos
  • ARITHMETIC PROGRESSIONS

    OSWAL PUBLICATION|Exercise CASE - BASED MCQs |15 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -III ( SECTION- D ) |2 Videos

Similar Questions

Explore conceptually related problems

If tan (A - B) = (1)/( sqrt3) and tan (A + B) = sqrt3. then the values of A and B are

If tan(A+B)=sqrt3 and tan(A-B)=(1)/(sqrt3),0^(@)lt A+Ble90^(@), A gt B , then find the value of A and B.

if tan(a+b)=sqrt(3) and tan A=(1)/(sqrt(3)) then find tan b=

If tan (A+B) =1 and tan (A-B)= (1)/sqrt(3),0^(@)lt A+B lt 90^(@), then the value of sin (3A-7B) is :

tan(A+B)=sqrt(3) and sinA=(1)/(sqrt(2)) , then the value of B in radians is _______

If tan(A+B)=sqrt(3)andtan(A-B)=(1)/(sqrt(3)),angleA+angleBlt90^(@)AgeB , then angleA is

If sin (A+B)=1 and tan (A-B)= (1)/(sqrt(3)) then A-B=?

If tan (A+B) = sqrt3 and tan(A-B)=1/sqrt3,0^(@)ltA+Ble90^(@),A gt B , find A and B .