Home
Class 10
MATHS
An isosceles triangle ABC, with AB = AC,...

An isosceles triangle ABC, with AB = AC, circumscribes a circle, touching BC at P, AC at Q and AB at R. Prove that the contact point P bisects BC.

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -III ( SECTION- C ) |2 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -III ( SECTION- D ) |2 Videos
  • C.B.S.E 2020 CLASS -X (OUTSIDE DELHI)

    OSWAL PUBLICATION|Exercise OUTSIDE DELHI SET -III ( SECTION- A ) |6 Videos
  • C.B.S.E 2020 CLASS -X (DELHI)

    OSWAL PUBLICATION|Exercise DELHI SET -III ( SECTION- D ) |1 Videos
  • CIRCLES

    OSWAL PUBLICATION|Exercise SELF ASSESSMENT|5 Videos

Similar Questions

Explore conceptually related problems

The incircle of an isosceles triangle ABC , with AB=AC , touches the sides AB , BC , CA at D,E and F respectively. Prove that E bisects BC .

triangleABC is an isosceles triangle in which AB=AC, circumscribed about a circle. Prove that the base is bisccted by the point of contact.

Knowledge Check

  • ABC is an isosceles triangle with AB = AC. A circle through B touching AC at the middle point intersects AB at P. Then AP : AB is :

    A
    `4 :1`
    B
    `2:3`
    C
    `3:5`
    D
    `1:4`
  • ABC is an isosceles triangle with AB = AC. A circle through B touching AC at the middle point intersects AB at P. Then, AP : AB is

    A
    ` 3 : 5`
    B
    `1 : 4`
    C
    `4 : 1`
    D
    `2 : 3`
  • ABC is an isosceles triangle with AB = AC. A circle through B touching AC at the middle point Intersects AB at P. Then AP: AB is :

    A
    `4:1`
    B
    `2:3`
    C
    `3:5`
    D
    `1:4 `
  • Similar Questions

    Explore conceptually related problems

    A triangle ABC is drawn to circumscribe a circle. If AB = 13 cm, BC = 14 cm and AE =7 cm, then find AC.

    The bisector of /_B of an isosceles triangle ABC with AB=AC meets the circumcircle of ABC at P as shown in Figure.If AP and BC produced meet at Q, prove that CQ=CA

    The incircle of an isoceles triangle ABC, with AB=AC, touches the sides AB,BC and CA at D,E and F respecrively. Prove that E bisects BC.

    In Delta ABC, AB = AC. A circle is drawn with diameter AB and it intersects BC at D. Prove that D is the midpoint of BC.

    ABC is an isosceles triangle (AB = AC) circumscribed about a circle. Then, which of the following statements is correct ?