Home
Class 10
MATHS
Prove that (1 - tan^(2) theta)/(1 + tan^...

Prove that `(1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) - sin^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta - \sin^2 \theta, \] we will start with the left-hand side and manipulate it step by step. ### Step 1: Substitute \(\tan \theta\) Recall that \[ \tan \theta = \frac{\sin \theta}{\cos \theta}. \] Thus, we can express \(\tan^2 \theta\) as: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}. \] Now, substituting this into the left-hand side gives us: \[ \frac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}}. \] ### Step 2: Simplify the Expression To simplify, we can multiply both the numerator and the denominator by \(\cos^2 \theta\): \[ \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}. \] ### Step 3: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 \theta + \cos^2 \theta = 1. \] Thus, the denominator simplifies to: \[ \cos^2 \theta + \sin^2 \theta = 1. \] ### Step 4: Final Simplification Now, substituting this back into our expression gives: \[ \frac{\cos^2 \theta - \sin^2 \theta}{1} = \cos^2 \theta - \sin^2 \theta. \] ### Conclusion We have shown that: \[ \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta - \sin^2 \theta. \] Thus, the equation is proved. ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 02

    EDUCART PUBLICATION|Exercise SECTION - C|11 Videos
  • SAMPLE QUESTION PAPER 02

    EDUCART PUBLICATION|Exercise SECTION - D|9 Videos
  • SAMPLE QUESTION PAPER 02

    EDUCART PUBLICATION|Exercise SECTION - A (ANSWER THE QUESTIONS) |6 Videos
  • SAMPLE PAPER SOLVED 4

    EDUCART PUBLICATION|Exercise SECTION - C|10 Videos
  • STATISTICS AND PROBABILITY

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|19 Videos

Similar Questions

Explore conceptually related problems

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

Prove each of the following identities : (i) (1- tan^(2) theta)/(1+ tan^(2) theta) = ( cos^(2) theta - sin^(2) theta) (ii) (1- tan^(2) theta)/(cot^(2) -1) = tan^(2) theta

If 3cot theta=4 then show that (1-tan^(2)theta)/(1+tan^(2)theta)=(cos^(2)theta-sin^(2)theta)

Prove that (1+ tan^4 theta)/(1+ tan^2 theta) = sec ^2 theta-2 sin^2theta

Prove that : sin^(2)theta+(1)/(1+tan^(2)theta)=1

Prove that : (tan^(3) theta)/(1+tan^(2)theta) +(cot^(3)theta)/(1+cot^(2)theta) = sec theta "cosec " theta - 2 sin theta cos theta .

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

Prove that (1+tan theta)/(1-tan theta) = (1 - sin 2 theta)/(cos 2 theta) .

Prove that (tan^(3)theta)/(1+tan^(2)theta)+(cot^(3)theta)/(1+cot^(2)theta)=sec theta cos ec theta-2sin theta cos theta

prove that (sec^2 theta-sin^2theta)/tan^2 theta = 1+cot^2 theta-cos^2 theta