Home
Class 10
MATHS
Prove that : (tantheta+2)(2tantheta+1)=5...

Prove that : `(tantheta+2)(2tantheta+1)=5tantheta+2sec^(2)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \((\tan \theta + 2)(2\tan \theta + 1) = 5\tan \theta + 2\sec^2 \theta\), we will start by expanding the left-hand side (LHS) and simplifying it step by step. ### Step-by-Step Solution: 1. **Expand the Left-Hand Side:** \[ (\tan \theta + 2)(2\tan \theta + 1) \] We will use the distributive property (also known as the FOIL method for binomials): \[ = \tan \theta \cdot 2\tan \theta + \tan \theta \cdot 1 + 2 \cdot 2\tan \theta + 2 \cdot 1 \] \[ = 2\tan^2 \theta + \tan \theta + 4\tan \theta + 2 \] 2. **Combine Like Terms:** Now, we combine the like terms: \[ = 2\tan^2 \theta + (1 + 4)\tan \theta + 2 \] \[ = 2\tan^2 \theta + 5\tan \theta + 2 \] 3. **Use the Identity for \(\sec^2 \theta\):** We know from trigonometric identities that: \[ \sec^2 \theta = 1 + \tan^2 \theta \] We can rewrite \(2\sec^2 \theta\) as: \[ 2\sec^2 \theta = 2(1 + \tan^2 \theta) = 2 + 2\tan^2 \theta \] 4. **Substituting Back:** Now, substitute \(2\sec^2 \theta\) back into our expression: \[ = 5\tan \theta + 2 + 2\tan^2 \theta \] 5. **Rearranging:** We can rearrange this to match the right-hand side (RHS): \[ = 5\tan \theta + 2 + 2\tan^2 \theta \] \[ = 5\tan \theta + 2 + 2\tan^2 \theta \] This shows that both sides are equal. 6. **Conclusion:** Therefore, we have shown that: \[ (\tan \theta + 2)(2\tan \theta + 1) = 5\tan \theta + 2\sec^2 \theta \] Hence, the equation is proved.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER SOLVED 9

    EDUCART PUBLICATION|Exercise Part - B (Section -IV) |11 Videos
  • SAMPLE PAPER SOLVED 9

    EDUCART PUBLICATION|Exercise Part - B (Section -V) |4 Videos
  • SAMPLE PAPER SOLVED 9

    EDUCART PUBLICATION|Exercise Part - A (Section -II) |15 Videos
  • SAMPLE PAPER SOLVED 10

    EDUCART PUBLICATION|Exercise PART - B ( SECTION - V ) |5 Videos
  • SAMPLE PAPER SOLVED 4

    EDUCART PUBLICATION|Exercise SECTION - C|10 Videos

Similar Questions

Explore conceptually related problems

Prove that : (tan theta)/(sectheta+1)-(tantheta)/(1-sectheta)=2cosec theta

tantheta+tan2theta=tanthetatan2theta=1

Knowledge Check

  • (tantheta+2)(2 tantheta+1)= ?

    A
    `5 tantheta+ sectheta`
    B
    `5 tantheta+ 2sec^(2)theta`
    C
    `5 tan^(2)theta+ sec^(2)theta`
    D
    none of these
  • costheta(tantheta+2)(2tantheta+1)=?

    A
    0
    B
    1
    C
    `2sectheta+5sintheta`
    D
    `5sectheta+2sintheta`
  • costheta(tantheta+2)(2tantheta+1)=?

    A
    `2sectheta+5sintheta`
    B
    `3sectheta+4sintheta`
    C
    `sectheta+sintheta`
    D
    `4sectheta+5sintheta`
  • Similar Questions

    Explore conceptually related problems

    Prove that : tantheta+tantheta+tan(90^(@)-theta)=sectheta*sec(90^(@)-theta)

    tantheta+tan2theta=tan3theta

    Solve: (1-tantheta)(1+sin2theta)=(1+tantheta)

    tantheta-tantheta/2=sectheta/2

    Prove that : (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta" cosec "theta