Home
Class 10
MATHS
If cosA = 5/13, find the value of tan A ...

If `cosA = 5/13`, find the value of tan A + cot A

A

`169/60`

B

`12/13`

C

1

D

`60/169`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan A + \cot A \) given that \( \cos A = \frac{5}{13} \). ### Step 1: Write the expression for \( \tan A + \cot A \) We know that: \[ \tan A = \frac{\sin A}{\cos A} \quad \text{and} \quad \cot A = \frac{\cos A}{\sin A} \] Thus, we can write: \[ \tan A + \cot A = \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} \] ### Step 2: Combine the fractions To combine the fractions, we find a common denominator, which is \( \sin A \cos A \): \[ \tan A + \cot A = \frac{\sin^2 A + \cos^2 A}{\sin A \cos A} \] ### Step 3: Use the Pythagorean identity From the Pythagorean identity, we know that: \[ \sin^2 A + \cos^2 A = 1 \] So we can substitute this into our expression: \[ \tan A + \cot A = \frac{1}{\sin A \cos A} \] ### Step 4: Find \( \sin A \) We know \( \cos A = \frac{5}{13} \). To find \( \sin A \), we use the identity: \[ \sin^2 A + \cos^2 A = 1 \implies \sin^2 A = 1 - \cos^2 A \] Calculating \( \cos^2 A \): \[ \cos^2 A = \left(\frac{5}{13}\right)^2 = \frac{25}{169} \] Thus, \[ \sin^2 A = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169} \] Taking the square root: \[ \sin A = \sqrt{\frac{144}{169}} = \frac{12}{13} \] ### Step 5: Substitute \( \sin A \) and \( \cos A \) into the expression Now we substitute \( \sin A \) and \( \cos A \) back into the expression for \( \tan A + \cot A \): \[ \tan A + \cot A = \frac{1}{\sin A \cos A} = \frac{1}{\left(\frac{12}{13}\right) \left(\frac{5}{13}\right)} \] ### Step 6: Calculate \( \sin A \cos A \) Calculating \( \sin A \cos A \): \[ \sin A \cos A = \frac{12}{13} \cdot \frac{5}{13} = \frac{60}{169} \] Thus, \[ \tan A + \cot A = \frac{1}{\frac{60}{169}} = \frac{169}{60} \] ### Final Answer The value of \( \tan A + \cot A \) is: \[ \boxed{\frac{169}{60}} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS ( WRITE TRUE FALSE )|4 Videos
  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS ( FILL IN THE BLANKS )|11 Videos
  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS |42 Videos
  • COORDINATE GEOMETRY

    EDUCART PUBLICATION|Exercise LONG ANSWER (LA) TYPE QUESTIONS (4 MARKS) |7 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    EDUCART PUBLICATION|Exercise LONG ANSWER Type Questions [4 marks]|10 Videos

Similar Questions

Explore conceptually related problems

If cos A=(7)/(25), find the value of tan A+cot A

Find the value of tan { cot ^(-1) ((-2)/3)}

If A is in the fourth quadrant and cosA=(5)/(13) , find the value of (13sinA+5secA)/(5tanA+6" cosec A") :

If sin A=(5)/(13), then find the value of sec A cos ecA+tan A

Find the value of tan (13 pi)/(12)

Find the value of (tan 495^(@))/(cot 855^(@))

Find the value of (tan 30^(@))/(cot 60^(@)) .

if sin A = 4/5 , then find the value of (4 + tan A) (2 + cosA)