Home
Class 10
MATHS
Evaluate: (sin^(4) 60^(@) + sec^(4)30^(@...

Evaluate: `(sin^(4) 60^(@) + sec^(4)30^(@)) - 2(cos^(2)45^(@) - sin^(2) 90^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression `(sin^4(60°) + sec^4(30°)) - 2(cos^2(45°) - sin^2(90°))`, we will follow these steps: ### Step 1: Calculate \( \sin(60°) \) The value of \( \sin(60°) \) is \( \frac{\sqrt{3}}{2} \). ### Step 2: Calculate \( \sin^4(60°) \) Now, we find \( \sin^4(60°) \): \[ \sin^4(60°) = \left(\frac{\sqrt{3}}{2}\right)^4 = \frac{3^2}{2^4} = \frac{9}{16} \] ### Step 3: Calculate \( \sec(30°) \) The value of \( \sec(30°) \) is the reciprocal of \( \cos(30°) \). Since \( \cos(30°) = \frac{\sqrt{3}}{2} \), we have: \[ \sec(30°) = \frac{1}{\cos(30°)} = \frac{2}{\sqrt{3}} \] ### Step 4: Calculate \( \sec^4(30°) \) Now, we find \( \sec^4(30°) \): \[ \sec^4(30°) = \left(\frac{2}{\sqrt{3}}\right)^4 = \frac{2^4}{3^2} = \frac{16}{9} \] ### Step 5: Combine \( \sin^4(60°) \) and \( \sec^4(30°) \) Now we add \( \sin^4(60°) \) and \( \sec^4(30°) \): \[ \sin^4(60°) + \sec^4(30°) = \frac{9}{16} + \frac{16}{9} \] To add these fractions, we need a common denominator. The least common multiple of 16 and 9 is 144: \[ \frac{9}{16} = \frac{9 \times 9}{16 \times 9} = \frac{81}{144} \] \[ \frac{16}{9} = \frac{16 \times 16}{9 \times 16} = \frac{256}{144} \] Now, adding these: \[ \frac{81}{144} + \frac{256}{144} = \frac{337}{144} \] ### Step 6: Calculate \( \cos(45°) \) The value of \( \cos(45°) \) is \( \frac{1}{\sqrt{2}} \). ### Step 7: Calculate \( \cos^2(45°) \) Now, we find \( \cos^2(45°) \): \[ \cos^2(45°) = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] ### Step 8: Calculate \( \sin(90°) \) The value of \( \sin(90°) \) is 1. ### Step 9: Calculate \( \sin^2(90°) \) Now, we find \( \sin^2(90°) \): \[ \sin^2(90°) = 1^2 = 1 \] ### Step 10: Combine \( 2(cos^2(45°) - sin^2(90°)) \) Now we calculate: \[ 2(cos^2(45°) - sin^2(90°)) = 2\left(\frac{1}{2} - 1\right) = 2\left(\frac{1}{2} - \frac{2}{2}\right) = 2\left(-\frac{1}{2}\right) = -1 \] ### Step 11: Final Calculation Now we substitute back into the original expression: \[ \left(\frac{337}{144}\right) - (-1) = \frac{337}{144} + 1 = \frac{337}{144} + \frac{144}{144} = \frac{481}{144} \] ### Final Answer Thus, the final answer is: \[ \frac{481}{144} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise SHORT ANSWER (SA-II) TYPE QUESTIONS |27 Videos
  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS |42 Videos
  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS ( VERY SHORT ANSWER TYPE QUESTIONS )|11 Videos
  • COORDINATE GEOMETRY

    EDUCART PUBLICATION|Exercise LONG ANSWER (LA) TYPE QUESTIONS (4 MARKS) |7 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    EDUCART PUBLICATION|Exercise LONG ANSWER Type Questions [4 marks]|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of 4(sin^(4)30^(@)+cos^(4)30^(@))-3(cos^(2)45^(@)+sin^(2)90^(@)) .

Evaluate : ( 5 cos ^(2) 60^(@) + 4 sec ^(2) 30^(@) - tan ^(2) 45^(@))/( sin ^(2) 30^(@) + cos ^(2) 30^(@))

Evaluate : 4(sin^(4)30^(0)+cos^(4)60^(@))-(2)/(3)(sin^(2)60^(@)-cos^(2)45^(@))+(1)/(2)tan^(2)60^(@)

Evaluate : sin ^(2)60^(@)tan 45^(@)- cos^(2)45^(@)sec 60^(@)

The value of (1)/(2) sin ^(2) 90^(@) sin^(2) 30^(@) cos ^(2) 45^(@) + 4 tan ^(2) 30^(@) + (1)/(2) sin^(2) 90^(@) - 2 cos ^(2) 90^(@) is :

Evaluate 3 cos^(2) 30^(@) +sec^(2) 30^(@) +2 cos 0^(@) + 3sin 90^(@) -tan^(2) 60^(@)