Home
Class 10
MATHS
In a rhombus ABCD, prove that AC^(2) + B...

In a rhombus ABCD, prove that `AC^(2) + BD^(2) = 4AB^(2)`

Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    EDUCART PUBLICATION|Exercise SHORT ANSWER (SA-I) TYPE QUESTIONS|30 Videos
  • TRIANGLES

    EDUCART PUBLICATION|Exercise SHORT ANSWER (SA-II) TYPE QUESTIONS|21 Videos
  • TRIANGLES

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUSTIONS (FILL IN THE BLANKS)|11 Videos
  • SURFACE AREAS AND VOLUMES

    EDUCART PUBLICATION|Exercise LONG ANSWER TYPE QUESTIONS|30 Videos

Similar Questions

Explore conceptually related problems

For a rhambus ABCD , prove that 4 AB ^(2) = AC^(2) + BD^(2)

In a rhombus prove that sum of squares of sides is equal to sum of square of diagonals or, In a rhombus ABCD prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)

In rhombus ABCD,show that 4AB^(2)=AC^(2)+BD^(2)

In a Delta ABC , angleB is an acute-angle and AD bot BC Prove that : (i) AC^(2) = AB^(2) + BC^(2) - 2 BC xx BD (ii) AB^(2) + CD^(2) = AC^(2) + BD^(2)

In the given figure if AD bot BC prove that AB^(2)+CD^(2)= BD^(2) +AC^(2)

ABCD is a rhombus.Prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)

In a quadrilateral ABCD prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)+4PQ^(2) where P and Q are middle points of diagonals AC and BD.

In a quadrilateral ABCD ,prove that AB^(2)+BC^(2)+CD^(2)+DA^(2)=AC^(2)+BD^(2)+4PQ^(2) where P and Q are middle points of diagonals AC and BD.

In any triangle ABC,prove that AB^(2)+AC^(2)=2(AD^(2)+BD^(2)), where D is the midpoint of BC .

In a right triangle ABC, right angled at A, AD is drawn perpendicular to BC. Prove that: AB^(2)-BD^(2)= AC^(2)-CD^(2)