Home
Class 12
MATHS
If [(2a+b,a-2b),(5c-d,4c+3d)]=[(4,-3),(1...

If `[(2a+b,a-2b),(5c-d,4c+3d)]=[(4,-3),(11,24)]` , then value of `a+b-c +2d` is :

A

8

B

10

C

4

D

`-8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compare the components of the given matrices and solve for the variables \(a\), \(b\), \(c\), and \(d\). Given: \[ \begin{pmatrix} 2a + b & a - 2b \\ 5c - d & 4c + 3d \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 11 & 24 \end{pmatrix} \] We can equate the corresponding elements of the matrices: 1. \(2a + b = 4\) (Equation 1) 2. \(a - 2b = -3\) (Equation 2) 3. \(5c - d = 11\) (Equation 3) 4. \(4c + 3d = 24\) (Equation 4) ### Step 1: Solve for \(a\) and \(b\) From Equation 1: \[ 2a + b = 4 \quad \text{(1)} \] From Equation 2: \[ a - 2b = -3 \quad \text{(2)} \] Now, we can express \(b\) from Equation 1: \[ b = 4 - 2a \quad \text{(5)} \] Substituting (5) into (2): \[ a - 2(4 - 2a) = -3 \] \[ a - 8 + 4a = -3 \] \[ 5a - 8 = -3 \] \[ 5a = 5 \] \[ a = 1 \] Now substituting \(a = 1\) back into (5) to find \(b\): \[ b = 4 - 2(1) = 4 - 2 = 2 \] ### Step 2: Solve for \(c\) and \(d\) Now we will solve for \(c\) and \(d\) using Equations 3 and 4. From Equation 3: \[ 5c - d = 11 \quad \text{(3)} \] From Equation 4: \[ 4c + 3d = 24 \quad \text{(4)} \] We can express \(d\) from Equation 3: \[ d = 5c - 11 \quad \text{(6)} \] Substituting (6) into (4): \[ 4c + 3(5c - 11) = 24 \] \[ 4c + 15c - 33 = 24 \] \[ 19c - 33 = 24 \] \[ 19c = 57 \] \[ c = 3 \] Now substituting \(c = 3\) back into (6) to find \(d\): \[ d = 5(3) - 11 = 15 - 11 = 4 \] ### Step 3: Calculate \(a + b - c + 2d\) Now we have: - \(a = 1\) - \(b = 2\) - \(c = 3\) - \(d = 4\) We need to find: \[ a + b - c + 2d \] Substituting the values: \[ 1 + 2 - 3 + 2(4) = 1 + 2 - 3 + 8 \] \[ = 3 - 3 + 8 = 8 \] Thus, the final answer is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - C|5 Videos

Similar Questions

Explore conceptually related problems

If [(2a+b,a-2b),(5c-d,4c+3d)]=[(4,-3),(11,24)] then the value of a+b-c+2d is (a) 8 (b) 10 (c) 4 (d) -8

If a=b^(2)=c^(3)=d^(4) then the value of log_(4)(abcd) is

"If A"= ({:(2, 3),(5, 1):}), B = ({:(a, b),(c, d):}) and AB = -13I, then find the value of a + b - c + d. (a) 5 (b) 3 (c) 2 (d) 1

(a-5)^(2)+(b-c)^(2)+(c-d)^(2)+(b+c+d-9)^(2)=0, then the value of (a+b+c)(b+c+d) is :

If (a-2b-3c+4d)(a+2b+3c+4d) = (a+2b-3c-4d)(a-2b+3c-4d) then 2ad =

If a : b = 2 : 5, b : c = 4 : 7 and c : d = 9 : 14, then the value of a : b : c : d is : यदि a : b = 2 : 5, b : c = 4 : 7 और c : d = 9 : 14, तो a : b : c : d कितना है ?

if (2a+3b+4c+5d)/(2a-3b-4c-5d)=(2a-3b+4c-5d)/(2a-3b-4c+5d) , then show that a,3b,2c and 5d are in proportion.

If (a+b+2c+3d)(a-b-2c+3d)=(a-b+2c-3d)(a+b-2c-3d) , then 2b c is equal to 3/2 (b) (3a)/(2d) (c) 3a d (d) a^2d^2