Home
Class 12
MATHS
The simplified form of tan ^(-1) (( sqrt...

The simplified form of `tan ^(-1) (( sqrt (1 - x ^(2)))/(x )) ` is :

A

`sin ^(-1)x`

B

`cos ^(-1) x `

C

`sec ^(-1)x `

D

`"cosec" ^(-1) x `

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • SAMPLE PAPER - 5

    EDUCART PUBLICATION|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(2)))/(1+x))= 1/2 cos^(-1) x

If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =

The simplest form of tan^(-1)((x)/(a+sqrt(a^(2)-x^(2)))) is :

Find the simplified value of-: tan^-1(1/(sqrt(x^2-1)))

find the simplified value of- tan^-1((sqrt(1+x^2)+1)/x)

Simplify tan^(-1)((sqrt(1+x^2)-1)/x)

Find the simplified value of- tan^-1(sqrt(1+x^2)+x)

Write the following function in the simplest form: tan^(-1)((sqrt(1+x^(2))-1)/(x)),x!=0

tan^(-1)[x/sqrt(a^(2)-x^(2))]=