Home
Class 12
MATHS
For matrix A=[(2,5),(-11,7)] (adj A)' is...

For matrix `A=[(2,5),(-11,7)]` (adj A)' is equal to :

A

`[(-2,-5),(11,-7)]`

B

`[(7,5),(11,2)]`

C

`[(7,11),(-5,2)]`

D

`[(7,-5),(11,2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \((\text{adj } A)'\) for the matrix \(A = \begin{pmatrix} 2 & 5 \\ -11 & 7 \end{pmatrix}\), we will follow these steps: ### Step 1: Find the Adjoint of Matrix \(A\) The adjoint of a \(2 \times 2\) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by: \[ \text{adj } A = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \(A = \begin{pmatrix} 2 & 5 \\ -11 & 7 \end{pmatrix}\): - \(a = 2\) - \(b = 5\) - \(c = -11\) - \(d = 7\) Thus, we can compute the adjoint: \[ \text{adj } A = \begin{pmatrix} 7 & -5 \\ 11 & 2 \end{pmatrix} \] ### Step 2: Find the Transpose of the Adjoint Next, we need to find the transpose of the adjoint matrix. The transpose of a matrix is obtained by swapping its rows with columns. So, the adjoint matrix is: \[ \text{adj } A = \begin{pmatrix} 7 & -5 \\ 11 & 2 \end{pmatrix} \] Taking the transpose: \[ (\text{adj } A)' = \begin{pmatrix} 7 & 11 \\ -5 & 2 \end{pmatrix} \] ### Conclusion Thus, the final result for \((\text{adj } A)'\) is: \[ \begin{pmatrix} 7 & 11 \\ -5 & 2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - C|5 Videos

Similar Questions

Explore conceptually related problems

For matrix A=[(2,5),(-11,7)] , (adjA)' is equal to:

A matrix A=[(2,5),(-11,7)] , (abj A)' is equal to

If A is a 2xx2 non singular matrix, then adj(adj A) is equal to :

If A=[{:(11,7),(-13,17):}] then adj(adj A) is

If A is a 3times3 non-singular matrix,then adj (adj A ) is equal to

" If "A" is a "3times3" non-singular matrix,then adj(adjA) is equal to "

If A=[(3,2),(7,5)], B=[(6,7),(8,9)] , then adj (AB) is equal to