Home
Class 12
MATHS
If y = log (cos e^(x)), then (dy)/(dx) i...

If `y = log (cos e^(x)), then (dy)/(dx)` is:

A

`cose^(x-1) `

B

`e^(-x) cos e^x`

C

`e^(x) sin e^x`

D

`-e^(x) tan e^x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \log(\cos(e^x)) \), we will use the chain rule. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ y = \log(\cos(e^x)) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we apply the chain rule. The derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \) where \( u = \cos(e^x) \). Thus, we have: \[ \frac{dy}{dx} = \frac{1}{\cos(e^x)} \cdot \frac{d}{dx}(\cos(e^x)) \] ### Step 3: Differentiate \( \cos(e^x) \) Now, we need to differentiate \( \cos(e^x) \). Again, we apply the chain rule. The derivative of \( \cos(v) \) is \( -\sin(v) \cdot \frac{dv}{dx} \) where \( v = e^x \). So, \[ \frac{d}{dx}(\cos(e^x)) = -\sin(e^x) \cdot \frac{d}{dx}(e^x) \] ### Step 4: Differentiate \( e^x \) The derivative of \( e^x \) is simply \( e^x \). Therefore, \[ \frac{d}{dx}(\cos(e^x)) = -\sin(e^x) \cdot e^x \] ### Step 5: Substitute back into the derivative Now we substitute this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\cos(e^x)} \cdot (-\sin(e^x) \cdot e^x) \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = -\frac{\sin(e^x) \cdot e^x}{\cos(e^x)} \] ### Step 7: Use the identity for tangent We can rewrite this as: \[ \frac{dy}{dx} = -e^x \tan(e^x) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -e^x \tan(e^x) \]
Promotional Banner

Topper's Solved these Questions

  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - C|5 Videos

Similar Questions

Explore conceptually related problems

If y=log (log ( log x)) ,then (dy)/(dx)

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=log (sin x +cos x ) ,then (dy)/(dx)

If y=log _(e) x+sin x+e^(x) then (dy)/(dx) is:

If y = log [cos (x^(5))] then find (dy)/(dx)

If y=x^(log(log x)); then (dy)/(dx) is

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y = e^(log x ) , then ( dy)/(dx)

If y=log _(e^(x) ) (log x ),then (dy)/(dx)