Home
Class 12
MATHS
If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(...

If `A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)]` , then :

A

`A^(-1) = B`

B

`A^(-1)= 6B`

C

`B^(-1) = B`

D

`B^(-1)=1/6A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the matrices A and B given the matrices: \[ A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] \[ B = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \] We will first compute the product of matrices A and B (i.e., \( AB \)) and then analyze the result to determine which of the given options is correct. ### Step 1: Calculate the product \( AB \) To find \( AB \), we perform matrix multiplication: 1. **First Row of A with Columns of B**: - For the first element of \( AB \): \[ 1 \cdot 2 + (-1) \cdot (-4) + 0 \cdot 2 = 2 + 4 + 0 = 6 \] - For the second element of \( AB \): \[ 1 \cdot 2 + (-1) \cdot 2 + 0 \cdot (-1) = 2 - 2 + 0 = 0 \] - For the third element of \( AB \): \[ 1 \cdot (-4) + (-1) \cdot (-4) + 0 \cdot 5 = -4 + 4 + 0 = 0 \] 2. **Second Row of A with Columns of B**: - For the first element of \( AB \): \[ 2 \cdot 2 + 3 \cdot (-4) + 4 \cdot 2 = 4 - 12 + 8 = 0 \] - For the second element of \( AB \): \[ 2 \cdot 2 + 3 \cdot 2 + 4 \cdot (-1) = 4 + 6 - 4 = 6 \] - For the third element of \( AB \): \[ 2 \cdot (-4) + 3 \cdot (-4) + 4 \cdot 5 = -8 - 12 + 20 = 0 \] 3. **Third Row of A with Columns of B**: - For the first element of \( AB \): \[ 0 \cdot 2 + 1 \cdot (-4) + 2 \cdot 2 = 0 - 4 + 4 = 0 \] - For the second element of \( AB \): \[ 0 \cdot 2 + 1 \cdot 2 + 2 \cdot (-1) = 0 + 2 - 2 = 0 \] - For the third element of \( AB \): \[ 0 \cdot (-4) + 1 \cdot (-4) + 2 \cdot 5 = 0 - 4 + 10 = 6 \] Putting it all together, we find: \[ AB = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} = 6I \] ### Step 2: Relate \( A \) and \( B \) From the equation \( AB = 6I \), we can multiply both sides by \( B^{-1} \): \[ AB B^{-1} = 6I B^{-1} \] This simplifies to: \[ A = 6I B^{-1} \] Rearranging gives us: \[ B^{-1} = \frac{1}{6} A \] ### Conclusion Thus, we find that: \[ B^{-1} = \frac{1}{6} A \] This corresponds to option 4: \( B^{-1} = \frac{1}{6} B \).
Promotional Banner

Topper's Solved these Questions

  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - C|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the product AB , where A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4 ),(-4,2,-4),(2,-1,5 )] hence solve the system of linear equations x-y=3 2x +3y +4z =17 y+2z =7

Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4),(2,-1,5):}] . Find AB . Use this to solve that following system of equations : x-y=3 , 2x+3y+4z=17 , y+2z=7 .

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

If A = [(1,0,-4),(0,-1,2),(-1,2,1)] and B= [(5,8,4),(2,3,2),(1,2,1)] then find AB .

Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-1,5]] find AB and use this to solve the system of equations: y+2x=7,x-y=3,2x+3y+4z=17

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

EDUCART PUBLICATION-CBSE TERM -1 SAMPLE PAPER 1-SECTION - B
  1. The function f:R rarr R defined as f(x) = x^3 is:

    Text Solution

    |

  2. If x = a sec theta , y =b tan theta , then (d^2y)/(dx^2) at theta = pi...

    Text Solution

    |

  3. The derivative of sin^(-1)(2xsqrt(1-x^2)) w.r.t. sin^(-1)x,(1)/(sqrt2)...

    Text Solution

    |

  4. If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)] , ...

    Text Solution

    |

  5. Find the intervals in which the function f given by f(x)=2x^3-3x^2-36 ...

    Text Solution

    |

  6. Simplest form of tan^(-1)((sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sq...

    Text Solution

    |

  7. Given that A is a non-singular matrix of order 3 such that A^2 = 2A, ...

    Text Solution

    |

  8. The value of b for which the function f(x)=x+cos x+b is strictly decre...

    Text Solution

    |

  9. Let R be a relation on the set N given by R={(a ,\ b): a=b-2,\ b >6}do...

    Text Solution

    |

  10. The point(s), at which the function f given by f(x) = {{:((x),xlt0),(-...

    Text Solution

    |

  11. If A={:[(0,2),(3,-4)]:}and kA={:[(0,3a),(2b,24)]:}, then the values of...

    Text Solution

    |

  12. A linear programming problem is as follows: Minimize Z = 30x + 50y ...

    Text Solution

    |

  13. 1.The area of a trapezium is defined by function f and given by f(x) =...

    Text Solution

    |

  14. If A square matrix such that A^2 = A , then (l+A)^3 -7A is equal to :

    Text Solution

    |

  15. If tan^(-1) x =y then :

    Text Solution

    |

  16. Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2,5), (3, 6)...

    Text Solution

    |

  17. For A=[(3,1),(-1,2)] then 14A^(-1) is given by :

    Text Solution

    |

  18. Find the point on the curve y=x^3-11 x+5 at which the tangent is y"...

    Text Solution

    |

  19. Given that A=[(alpha, beta),(gamma, - alpha)] and A^2 =3 I then :

    Text Solution

    |

  20. For an objective function Z = ax + by, where a, bgt0, the corner poin...

    Text Solution

    |