Home
Class 12
MATHS
If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(...

If `A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)]` , then :

A

`A^(-1) = B`

B

`A^(-1)= 6B`

C

`B^(-1) = B`

D

`B^(-1)=1/6A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the matrices A and B given the matrices: \[ A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix} \] \[ B = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \] We will first compute the product of matrices A and B (i.e., \( AB \)) and then analyze the result to determine which of the given options is correct. ### Step 1: Calculate the product \( AB \) To find \( AB \), we perform matrix multiplication: 1. **First Row of A with Columns of B**: - For the first element of \( AB \): \[ 1 \cdot 2 + (-1) \cdot (-4) + 0 \cdot 2 = 2 + 4 + 0 = 6 \] - For the second element of \( AB \): \[ 1 \cdot 2 + (-1) \cdot 2 + 0 \cdot (-1) = 2 - 2 + 0 = 0 \] - For the third element of \( AB \): \[ 1 \cdot (-4) + (-1) \cdot (-4) + 0 \cdot 5 = -4 + 4 + 0 = 0 \] 2. **Second Row of A with Columns of B**: - For the first element of \( AB \): \[ 2 \cdot 2 + 3 \cdot (-4) + 4 \cdot 2 = 4 - 12 + 8 = 0 \] - For the second element of \( AB \): \[ 2 \cdot 2 + 3 \cdot 2 + 4 \cdot (-1) = 4 + 6 - 4 = 6 \] - For the third element of \( AB \): \[ 2 \cdot (-4) + 3 \cdot (-4) + 4 \cdot 5 = -8 - 12 + 20 = 0 \] 3. **Third Row of A with Columns of B**: - For the first element of \( AB \): \[ 0 \cdot 2 + 1 \cdot (-4) + 2 \cdot 2 = 0 - 4 + 4 = 0 \] - For the second element of \( AB \): \[ 0 \cdot 2 + 1 \cdot 2 + 2 \cdot (-1) = 0 + 2 - 2 = 0 \] - For the third element of \( AB \): \[ 0 \cdot (-4) + 1 \cdot (-4) + 2 \cdot 5 = 0 - 4 + 10 = 6 \] Putting it all together, we find: \[ AB = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} = 6I \] ### Step 2: Relate \( A \) and \( B \) From the equation \( AB = 6I \), we can multiply both sides by \( B^{-1} \): \[ AB B^{-1} = 6I B^{-1} \] This simplifies to: \[ A = 6I B^{-1} \] Rearranging gives us: \[ B^{-1} = \frac{1}{6} A \] ### Conclusion Thus, we find that: \[ B^{-1} = \frac{1}{6} A \] This corresponds to option 4: \( B^{-1} = \frac{1}{6} B \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - C|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate the product AB , where A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4 ),(-4,2,-4),(2,-1,5 )] hence solve the system of linear equations x-y=3 2x +3y +4z =17 y+2z =7

Given that A=[{:(1,-1,0),(2,3,4),(0,1,2):}] and B=[{:(2,2,-4),(-4,2,-4),(2,-1,5):}] . Find AB . Use this to solve that following system of equations : x-y=3 , 2x+3y+4z=17 , y+2z=7 .

Knowledge Check

  • If A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] , then AB will be

    A
    `[(17,0),(4,-2)]`
    B
    `[(4,0),(0,4)]`
    C
    `[(17,4),(0,-2)]`
    D
    `[(0,0),(0,0)]`
  • Similar Questions

    Explore conceptually related problems

    If A+B=[(1,0,2),(2,2,2),(1,1,2)] and A-B=[(1,4,4),(4,2,0),(-1,1,2)] then A=[(1,2,3),(3,2,1),(0,0,2)] and B=[(0,-2,-1),(-1,0,1),(1,1,0)]

    if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

    If A = [(1,0,-4),(0,-1,2),(-1,2,1)] and B= [(5,8,4),(2,3,2),(1,2,1)] then find AB .

    If A=[(1,3,0),(-1,2,1),(0,0,2)],B=[(2,3,4),(1,2,3),(-1,1,2)] then AB=……………

    Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-1,5]] find AB and use this to solve the system of equations: y+2x=7,x-y=3,2x+3y+4z=17

    If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

    if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'