Home
Class 12
MATHS
Given that A=[(alpha, beta),(gamma, - al...

Given that `A=[(alpha, beta),(gamma, - alpha)] and A^2 =3 I ` then :

A

`1+ alpha^2 + beta gamma = 0 `

B

`1- alpha^2 + beta gamma = 0 `

C

`3- alpha^2 - beta gamma = 0 `

D

`3 + alpha^2 + beta gamma = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the elements of the matrix \( A \) given that \( A^2 = 3I \), where \( I \) is the identity matrix. Given: \[ A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] and \[ A^2 = 3I \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \cdot \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] ### Step 2: Perform the multiplication Calculating the elements of \( A^2 \): 1. First row, first column: \[ \alpha \cdot \alpha + \beta \cdot \gamma = \alpha^2 + \beta\gamma \] 2. First row, second column: \[ \alpha \cdot \beta + \beta \cdot (-\alpha) = \alpha\beta - \beta\alpha = 0 \] 3. Second row, first column: \[ \gamma \cdot \alpha + (-\alpha) \cdot \gamma = \gamma\alpha - \alpha\gamma = 0 \] 4. Second row, second column: \[ \gamma \cdot \beta + (-\alpha) \cdot (-\alpha) = \gamma\beta + \alpha^2 \] Putting it all together, we have: \[ A^2 = \begin{pmatrix} \alpha^2 + \beta\gamma & 0 \\ 0 & \gamma\beta + \alpha^2 \end{pmatrix} \] ### Step 3: Set \( A^2 \) equal to \( 3I \) Since \( A^2 = 3I \), we can write: \[ \begin{pmatrix} \alpha^2 + \beta\gamma & 0 \\ 0 & \gamma\beta + \alpha^2 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] ### Step 4: Equate the corresponding elements From the above equation, we can equate the elements: 1. \( \alpha^2 + \beta\gamma = 3 \) 2. \( \gamma\beta + \alpha^2 = 3 \) Both equations give us the same relationship: \[ \alpha^2 + \beta\gamma = 3 \] ### Step 5: Rearranging the equation Rearranging the equation gives: \[ 3 - \alpha^2 - \beta\gamma = 0 \] ### Conclusion Thus, the correct option that matches our derived equation is: \[ 3 - \alpha^2 - \beta\gamma = 0 \] This corresponds to option 3.
Promotional Banner

Topper's Solved these Questions

  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • SAMPLE PAPER 8

    EDUCART PUBLICATION|Exercise SECTION - C|9 Videos
  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - C|5 Videos

Similar Questions

Explore conceptually related problems

Given that A=[(alpha, beta),(gamma, alpha)] and A^(2) =3I , then :

If A=[(alpha,beta),(gamma,-alpha)] is such that A^(2)=I , then :

If alpha,beta;beta,gamma;gamma,alpha are the roots of a_(i)x^(2)+b_(i)x+c_(i)=0, for i=1,2,3, (given that alpha,beta,gamma>0 if sum alpha+sum alpha beta+alpha beta gamma=(Pi_(i=1)^(3)((a_(i)-b_(i)+c_(i))/(a_(i)))^((1)/(2))+k, then k is equal to

Prove that: tan(alpha-beta)+tan(beta-gamma)+tan (gamma-alpha) = tan(alpha-beta) tan (beta-gamma) tan (gamma-alpha) .

Prove that |[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Show that | (1,1,1), (alpha ^ 2, beta ^ 2, gamma ^ 2), (alpha ^ 3, beta ^ 3, gamma ^ 3) | = (alpha-beta) (beta-gamma) (gamma-alpha) (alphabeta + betagamma + gammaalpha) |

If alpha, beta, gamma are the roots of ax ^ (3) + bx ^ (2) + cx + d = 0 and det [[alpha, beta, gammabeta, gamma, alphagamma, alpha, beta]] = 0, alpha ! = beta! = gamma, alpha + beta-gamma, beta + gamma-alpha, and gamma + alpha-beta

If alpha,beta and gamma are angles such that tan alpha+tan beta+tan gamma=tan alpha tan beta tan gamma and x=cos alpha+i sin alpha,y=cos beta+i sin beta and z=cos gamma+i sin gamma then the value of xyz is

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is

EDUCART PUBLICATION-CBSE TERM -1 SAMPLE PAPER 1-SECTION - B
  1. The function f:R rarr R defined as f(x) = x^3 is:

    Text Solution

    |

  2. If x = a sec theta , y =b tan theta , then (d^2y)/(dx^2) at theta = pi...

    Text Solution

    |

  3. The derivative of sin^(-1)(2xsqrt(1-x^2)) w.r.t. sin^(-1)x,(1)/(sqrt2)...

    Text Solution

    |

  4. If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)] , ...

    Text Solution

    |

  5. Find the intervals in which the function f given by f(x)=2x^3-3x^2-36 ...

    Text Solution

    |

  6. Simplest form of tan^(-1)((sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sq...

    Text Solution

    |

  7. Given that A is a non-singular matrix of order 3 such that A^2 = 2A, ...

    Text Solution

    |

  8. The value of b for which the function f(x)=x+cos x+b is strictly decre...

    Text Solution

    |

  9. Let R be a relation on the set N given by R={(a ,\ b): a=b-2,\ b >6}do...

    Text Solution

    |

  10. The point(s), at which the function f given by f(x) = {{:((x),xlt0),(-...

    Text Solution

    |

  11. If A={:[(0,2),(3,-4)]:}and kA={:[(0,3a),(2b,24)]:}, then the values of...

    Text Solution

    |

  12. A linear programming problem is as follows: Minimize Z = 30x + 50y ...

    Text Solution

    |

  13. 1.The area of a trapezium is defined by function f and given by f(x) =...

    Text Solution

    |

  14. If A square matrix such that A^2 = A , then (l+A)^3 -7A is equal to :

    Text Solution

    |

  15. If tan^(-1) x =y then :

    Text Solution

    |

  16. Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2,5), (3, 6)...

    Text Solution

    |

  17. For A=[(3,1),(-1,2)] then 14A^(-1) is given by :

    Text Solution

    |

  18. Find the point on the curve y=x^3-11 x+5 at which the tangent is y"...

    Text Solution

    |

  19. Given that A=[(alpha, beta),(gamma, - alpha)] and A^2 =3 I then :

    Text Solution

    |

  20. For an objective function Z = ax + by, where a, bgt0, the corner poin...

    Text Solution

    |