Home
Class 12
MATHS
If y = log ( cos e ^(x)), then (dy)/(dx...

If `y = log ( cos e ^(x)), ` then `(dy)/(dx)=`

A

`e ^(x) cot e ^(x)`

B

`-e ^(x) sin e ^(x) log (cos e ^(x))`

C

`-e ^(x) tan e ^(x)`

D

`(1)/(cos e ^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \log(\cos(e^x)) \) and find \( \frac{dy}{dx} \), we will use the chain rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions The outer function is \( \log(u) \) where \( u = \cos(e^x) \). The inner function is \( \cos(v) \) where \( v = e^x \). ### Step 2: Differentiate the outer function The derivative of \( \log(u) \) with respect to \( u \) is: \[ \frac{d}{du} \log(u) = \frac{1}{u} \] Thus, we have: \[ \frac{dy}{du} = \frac{1}{\cos(e^x)} \] ### Step 3: Differentiate the inner function \( \cos(v) \) Now we differentiate \( \cos(v) \) with respect to \( v \): \[ \frac{d}{dv} \cos(v) = -\sin(v) \] Substituting \( v = e^x \), we get: \[ \frac{du}{dv} = -\sin(e^x) \] ### Step 4: Differentiate \( e^x \) Next, we differentiate \( e^x \) with respect to \( x \): \[ \frac{dv}{dx} = e^x \] ### Step 5: Apply the chain rule Now, we apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{\cos(e^x)} \cdot (-\sin(e^x)) \cdot e^x \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = -\frac{e^x \sin(e^x)}{\cos(e^x)} \] Using the identity \( \tan(v) = \frac{\sin(v)}{\cos(v)} \), we can rewrite this as: \[ \frac{dy}{dx} = -e^x \tan(e^x) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -e^x \tan(e^x) \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos
  • SAMPLE PAPER 3

    EDUCART PUBLICATION|Exercise Section - C|7 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

If y = log [cos (x^(5))] then find (dy)/(dx)

If y=log (log ( log x)) ,then (dy)/(dx)

If y = e^(log (log x ))log3 x,then (dy)/(dx)

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)

If y= e^(log (log x )) ,then (dy)/(dx) =

If y=log _(e) x+sin x+e^(x) then (dy)/(dx) is:

If y=log (sin x +cos x ) ,then (dy)/(dx)

If y=log _(e^(x) ) (log x ),then (dy)/(dx)

If y=log((e^(x))/(x^(2)))," then "(dy)/(dx)=