Home
Class 12
MATHS
If A = [{:(3, 4),(1,2):}], then |2A|=...

If `A = [{:(3, 4),(1,2):}],` then `|2A|=`

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \(2A\), where \(A\) is given as: \[ A = \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} \] ### Step 1: Multiply the matrix \(A\) by 2 First, we multiply each element of matrix \(A\) by 2: \[ 2A = 2 \times \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 \times 3 & 2 \times 4 \\ 2 \times 1 & 2 \times 2 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix} \] ### Step 2: Write down the matrix \(2A\) Now we have: \[ 2A = \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix} \] ### Step 3: Find the determinant of the matrix \(2A\) The determinant of a \(2 \times 2\) matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \(2A\): - \(a = 6\) - \(b = 8\) - \(c = 2\) - \(d = 4\) Now, substitute these values into the determinant formula: \[ \text{det}(2A) = (6 \times 4) - (8 \times 2) \] Calculating each term: \[ 6 \times 4 = 24 \] \[ 8 \times 2 = 16 \] Now, subtract the second term from the first: \[ \text{det}(2A) = 24 - 16 = 8 \] ### Final Answer Thus, the determinant \(|2A| = 8\). ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos
  • SAMPLE PAPER 3

    EDUCART PUBLICATION|Exercise Section - C|7 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

If A = [{:(3, 4), (-1, 2):}] " and B"= [{:(2, -3), (4, -5):}] , then find the determinant of AB.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A=[(3,4,1),(1,0,-2),(-2,-1,2)] then A^(-1) =?

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

If A=[(1,3,4),(2,1,2),(5,1,1)] , find A^(-1)

If A={:((1,-3,4),(2,1,-2)):},B={:((-2,-4,5),(1,-1,3)):} and 5A-3B+2X=O, then X=

Let A={:[(3,2,3),(-1,4,-2),(1,4,2)]:} Find additive inverse of A.

If A=[[1,-2,3],[0,-1,4],[-2,2,1]], then find |A| .

The order of the matrix [{:(1,2,3,4),(4,3,2,1),(2,4,3,1):}] is _________

If A={1,2},B={3,4}andC={4,5,6} Then A xx B={1,2}xx{3,4}={(1,3),(1,4),(2,3),(2,4)}