Home
Class 12
MATHS
The value of cot ((pi)/(2) - 2 cot^(-1) ...

The value of `cot ((pi)/(2) - 2 cot^(-1) sqrt3)` is :

A

0

B

`(1)/(sqrt3)`

C

`sqrt3`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot\left(\frac{\pi}{2} - 2 \cot^{-1}(\sqrt{3})\right) \). ### Step 1: Simplify \( 2 \cot^{-1}(\sqrt{3}) \) First, we need to find \( \cot^{-1}(\sqrt{3}) \). The angle whose cotangent is \( \sqrt{3} \) is \( \frac{\pi}{6} \) (since \( \cot\left(\frac{\pi}{6}\right) = \sqrt{3} \)). Thus, \[ \cot^{-1}(\sqrt{3}) = \frac{\pi}{6} \] Now, we calculate \( 2 \cot^{-1}(\sqrt{3}) \): \[ 2 \cot^{-1}(\sqrt{3}) = 2 \times \frac{\pi}{6} = \frac{\pi}{3} \] ### Step 2: Substitute back into the cotangent function Now we substitute this back into our original expression: \[ \cot\left(\frac{\pi}{2} - 2 \cot^{-1}(\sqrt{3})\right) = \cot\left(\frac{\pi}{2} - \frac{\pi}{3}\right) \] ### Step 3: Simplify the angle Now we simplify the angle: \[ \frac{\pi}{2} - \frac{\pi}{3} = \frac{3\pi}{6} - \frac{2\pi}{6} = \frac{\pi}{6} \] ### Step 4: Find the cotangent of the resulting angle Now we need to find \( \cot\left(\frac{\pi}{6}\right) \): \[ \cot\left(\frac{\pi}{6}\right) = \frac{1}{\tan\left(\frac{\pi}{6}\right)} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \] ### Final Answer Thus, the value of \( \cot\left(\frac{\pi}{2} - 2 \cot^{-1}(\sqrt{3})\right) \) is: \[ \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos
  • SAMPLE PAPER 3

    EDUCART PUBLICATION|Exercise Section - C|7 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

The value of cot(pi/4-2 cot^(-1)3) is

cot(pi/2-2cot^(-1)sqrt3)

The value of cot[(1)/(2)(sin^(-1))(sqrt(3))/(2)] is

The value of 2(cot^(-1))(1)/(2)-(cot^(-1))(4)/(3) is

cot^(-1)(2+sqrt(3))=

Prove that cot((pi)/(4)-2cot^(-1)3)=7

The value of cos ^(-1)""[cot ((pi)/(2))]+cos^(-1)""[sin ((2pi)/(3))] is

The value of cot^(-1)(cot(7pi)/(4)) is:

Find the value of tan^(-1)sqrt(3)-cot^(-1)-sqrt(3)

EDUCART PUBLICATION-SAMPLE PAPER 4 -SECTION - B
  1. The graph of the inequality 4x + 6y le 24 is :

    Text Solution

    |

  2. Let A = {1,2,3}, B {5,7,6} and f : A to B be defined as f = {(1,7), (...

    Text Solution

    |

  3. If A = [{:(3,1),(5,2):}], then (A ^(T)) ^(-1) =

    Text Solution

    |

  4. Richa went to an amusment park and was trilled to ride into a rollier ...

    Text Solution

    |

  5. The equation of tangent to the curve y = x ^(2) + 6x-4 at x =2 is :

    Text Solution

    |

  6. The function f (x) = 2x ^(3) + 9x ^(2) + 12 x + 20 is :

    Text Solution

    |

  7. The value of cot ((pi)/(2) - 2 cot^(-1) sqrt3) is :

    Text Solution

    |

  8. If [2 3 5 7]\ [1-3-2 4]=[-4 6-9x], write the value of x

    Text Solution

    |

  9. Let R be the relation in the set N given by R = {(a,b):|a-b| is odd}. ...

    Text Solution

    |

  10. The corner points of the feasible region, shown as shaded in the graph...

    Text Solution

    |

  11. If B = [{:(-2, 2, 0),(3,1,4):}]; C= [{:(2,0,-2),(7,1,6):}]and 2 A - 3 ...

    Text Solution

    |

  12. The derivative of sin ^(2) sqrtx with respect to x is :

    Text Solution

    |

  13. If x^m . y^n = (x+y)^(m+n) then (dy)/(dx)is:

    Text Solution

    |

  14. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  15. Evaluate |{:(1,2,3),(3,-1,1),(2,3,5):}|

    Text Solution

    |

  16. The domain of tan ^(-1) x is :

    Text Solution

    |

  17. The slope of tangent to the curve x =a sin ^(3) t , y = b cos ^(3)t &...

    Text Solution

    |

  18. If y + sin y = cos x, then (dy)/(dx)   at &nbsp ((pi)/(2), (pi)/(2)) i...

    Text Solution

    |

  19. If a matrix has 8 elements, then which of the following will not be a ...

    Text Solution

    |

  20. The function f (t) = tan t -t :

    Text Solution

    |