Home
Class 12
MATHS
If B = [{:(-2, 2, 0),(3,1,4):}]; C= [{:(...

If `B = [{:(-2, 2, 0),(3,1,4):}]; C= [{:(2,0,-2),(7,1,6):}]and 2 A - 3 B + 5 C = 0,` then the matrix A is :

A

`[{:(-8, 3, 5),(-13, -1, -9):}]`

B

`[{:(16,-6, - 10),( 26, 2, 18):}]`

C

`[{:(8, -3, -5),(13,1,9):}]`

D

`[{:(7, 4, -1),( 2, -3, 5):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2A - 3B + 5C = 0\) for the matrix \(A\), we will follow these steps: ### Step 1: Write down the matrices \(B\) and \(C\) Given: \[ B = \begin{pmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{pmatrix} \] ### Step 2: Calculate \(-3B\) To find \(-3B\), we multiply each element of \(B\) by \(-3\): \[ -3B = -3 \begin{pmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 6 & -6 & 0 \\ -9 & -3 & -12 \end{pmatrix} \] ### Step 3: Calculate \(5C\) Next, we calculate \(5C\) by multiplying each element of \(C\) by \(5\): \[ 5C = 5 \begin{pmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 10 & 0 & -10 \\ 35 & 5 & 30 \end{pmatrix} \] ### Step 4: Substitute \(-3B\) and \(5C\) into the equation Now we substitute \(-3B\) and \(5C\) into the original equation: \[ 2A - 3B + 5C = 0 \implies 2A + \begin{pmatrix} 6 & -6 & 0 \\ -9 & -3 & -12 \end{pmatrix} + \begin{pmatrix} 10 & 0 & -10 \\ 35 & 5 & 30 \end{pmatrix} = 0 \] ### Step 5: Combine the matrices Next, we combine the matrices: \[ 2A + \begin{pmatrix} 6 + 10 & -6 + 0 & 0 - 10 \\ -9 + 35 & -3 + 5 & -12 + 30 \end{pmatrix} = 0 \] This simplifies to: \[ 2A + \begin{pmatrix} 16 & -6 & -10 \\ 26 & 2 & 18 \end{pmatrix} = 0 \] ### Step 6: Isolate \(2A\) Now, we isolate \(2A\): \[ 2A = -\begin{pmatrix} 16 & -6 & -10 \\ 26 & 2 & 18 \end{pmatrix} = \begin{pmatrix} -16 & 6 & 10 \\ -26 & -2 & -18 \end{pmatrix} \] ### Step 7: Solve for \(A\) Finally, we divide each element by \(2\) to find \(A\): \[ A = \frac{1}{2} \begin{pmatrix} -16 & 6 & 10 \\ -26 & -2 & -18 \end{pmatrix} = \begin{pmatrix} -8 & 3 & 5 \\ -13 & -1 & -9 \end{pmatrix} \] ### Final Answer Thus, the matrix \(A\) is: \[ A = \begin{pmatrix} -8 & 3 & 5 \\ -13 & -1 & -9 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos
  • SAMPLE PAPER 3

    EDUCART PUBLICATION|Exercise Section - C|7 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos

Similar Questions

Explore conceptually related problems

If A = [{:(2, -3), (4, 1):}], B = [{:(2, 3), (5, 0):}]" and " C = [{:(-1, 2),(0, 5):}] then find A(B + C).

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

If A=[{:(1,-5),(-3," "2),(4,-2):}]" and "B=[{:(3," "1),(2,-1),(-2," "3):}] , find the matrix C such that A+B+C is a zero matrix.

If A=[(2, 2), (-3, 1), (4, 0)], B=[(6, 2), (1, 3), (0, 4)], find the matrix C such that A + B + C is zero matrix.

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

if A[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find A matrix C such that 2A-B+3c is a unit matrix.

If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)] , then find the matrix X such that XA = B

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

EDUCART PUBLICATION-SAMPLE PAPER 4 -SECTION - B
  1. The graph of the inequality 4x + 6y le 24 is :

    Text Solution

    |

  2. Let A = {1,2,3}, B {5,7,6} and f : A to B be defined as f = {(1,7), (...

    Text Solution

    |

  3. If A = [{:(3,1),(5,2):}], then (A ^(T)) ^(-1) =

    Text Solution

    |

  4. Richa went to an amusment park and was trilled to ride into a rollier ...

    Text Solution

    |

  5. The equation of tangent to the curve y = x ^(2) + 6x-4 at x =2 is :

    Text Solution

    |

  6. The function f (x) = 2x ^(3) + 9x ^(2) + 12 x + 20 is :

    Text Solution

    |

  7. The value of cot ((pi)/(2) - 2 cot^(-1) sqrt3) is :

    Text Solution

    |

  8. If [2 3 5 7]\ [1-3-2 4]=[-4 6-9x], write the value of x

    Text Solution

    |

  9. Let R be the relation in the set N given by R = {(a,b):|a-b| is odd}. ...

    Text Solution

    |

  10. The corner points of the feasible region, shown as shaded in the graph...

    Text Solution

    |

  11. If B = [{:(-2, 2, 0),(3,1,4):}]; C= [{:(2,0,-2),(7,1,6):}]and 2 A - 3 ...

    Text Solution

    |

  12. The derivative of sin ^(2) sqrtx with respect to x is :

    Text Solution

    |

  13. If x^m . y^n = (x+y)^(m+n) then (dy)/(dx)is:

    Text Solution

    |

  14. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  15. Evaluate |{:(1,2,3),(3,-1,1),(2,3,5):}|

    Text Solution

    |

  16. The domain of tan ^(-1) x is :

    Text Solution

    |

  17. The slope of tangent to the curve x =a sin ^(3) t , y = b cos ^(3)t &...

    Text Solution

    |

  18. If y + sin y = cos x, then (dy)/(dx)   at &nbsp ((pi)/(2), (pi)/(2)) i...

    Text Solution

    |

  19. If a matrix has 8 elements, then which of the following will not be a ...

    Text Solution

    |

  20. The function f (t) = tan t -t :

    Text Solution

    |