Home
Class 12
MATHS
Find the simplest value of f(x)=tan^-1 ...

Find the simplest value of `f(x)=tan^-1 ((sqrt(1+x^2)-1)/x),x in R - {0}`

A

`tan^(-1)x`

B

`2 sec^(-1)x`

C

`(1)/(2)tan^(-1)x`

D

`sec^(-1)x`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER - 5

    EDUCART PUBLICATION|Exercise Section - B|20 Videos
  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - C|5 Videos
  • SAMPLE PAPER 09

    EDUCART PUBLICATION|Exercise SECTIONS-C|8 Videos

Similar Questions

Explore conceptually related problems

Find the simplified value of-: tan^-1(1/(sqrt(x^2-1)))

Find the simplified value of- tan^-1(sqrt(1+x^2)+x)

Find the greatest & least value of f(x)=sin^(-1).(x)/(sqrt(x^(2)+1))-ln x in [(1)/(sqrt(3)), sqrt(3)] .

Write the following function in the simplest form: tan^(-1)((sqrt(1+x^(2))-1)/(x)),x!=0

Write the simplest form : tan^(-1)(1/sqrt(x^2 -1)) , |x|gt1

f(x)=2x-tan^(-1)x-ln(x+sqrt(1+x^(2)));x in R then

Write each of the following in the simplest form: tan^(-1){sqrt(1+x^(2))-x},x in R (ii) tan^(-1){(sqrt(1+x^(2))-1)/(x)},x!=0

The simplest form of tan^(-1)((x)/(a+sqrt(a^(2)-x^(2)))) is :

Find the simplest form of tan^(-1)(sqrt((1-sin x)/(1+sin x))),0 lt x lt pi

Write the following in the simplest form : tan ^(-1) ((sqrt(1-x^(2)))/(1+x))= 1/2 cos^(-1) x