Home
Class 12
MATHS
If |{:(x,sintheta,costheta),(-sintheta,-...

If `|{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}|=8`, then the value of x is :

A

2

B

1

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant of the matrix given and set it equal to 8. The matrix is: \[ \begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{vmatrix} \] ### Step 1: Calculate the determinant using the first row. The determinant can be calculated using the formula for determinants of 3x3 matrices: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we have: - \( a = x \) - \( b = \sin \theta \) - \( c = \cos \theta \) - \( d = -\sin \theta \) - \( e = -x \) - \( f = 1 \) - \( g = \cos \theta \) - \( h = 1 \) - \( i = x \) Thus, the determinant becomes: \[ D = x \left((-x)(x) - (1)(1)\right) - \sin \theta \left((-sin \theta)(x) - (1)(\cos \theta)\right) + \cos \theta \left((-sin \theta)(1) - (-x)(\cos \theta)\right) \] ### Step 2: Simplify each term in the determinant. Calculating each term: 1. The first term: \[ x \left(-x^2 - 1\right) = -x^3 - x \] 2. The second term: \[ -\sin \theta \left(-\sin \theta x - \cos \theta\right) = \sin^2 \theta x + \sin \theta \cos \theta \] 3. The third term: \[ \cos \theta \left(-\sin \theta + x \cos \theta\right) = -\sin \theta \cos \theta + x \cos^2 \theta \] ### Step 3: Combine all terms. Now, combining all the terms we have: \[ D = -x^3 - x + \sin^2 \theta x + \sin \theta \cos \theta - \sin \theta \cos \theta + x \cos^2 \theta \] Notice that \(\sin \theta \cos \theta\) cancels out: \[ D = -x^3 - x + \sin^2 \theta x + x \cos^2 \theta \] ### Step 4: Factor out \(x\). We can factor out \(x\) from the remaining terms: \[ D = -x^3 - x + x(\sin^2 \theta + \cos^2 \theta) \] Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ D = -x^3 - x + x(1) = -x^3 - x + x = -x^3 \] ### Step 5: Set the determinant equal to 8. Since we know that the determinant equals 8: \[ -x^3 = 8 \] ### Step 6: Solve for \(x\). Multiplying both sides by -1 gives us: \[ x^3 = -8 \] Taking the cube root of both sides: \[ x = -2 \] ### Final Answer: Thus, the value of \(x\) is \(-2\). ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION -B|20 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

Prove that the determinant |{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}| is independent of theta .

If |xsinthetacostheta-sintheta-x1costheta1x|=8 , write the value of xdot

If (sintheta+costheta)/(sintheta-costheta)=3 then the value of sin^(4)theta is :

If sintheta+costheta=x then sintheta-costheta=?

Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

If A = ((costheta,-sintheta),(sintheta,costheta)) then

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

If (sintheta+costheta)/(sintheta-costheta)=3 and theta is an acute angle, then the value of (3sintheta+4costheta)/(8costheta-3sintheta) is