Home
Class 12
MATHS
If y=log(sinx-cosx), then (dy)/(dx) at x...

If `y=log(sinx-cosx)`, then `(dy)/(dx)` at `x=(pi)/(2)` is :

A

0

B

1

C

`(1)/(2)`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \log(\sin x - \cos x) \) and find \( \frac{dy}{dx} \) at \( x = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Differentiate \( y \) We start with the function: \[ y = \log(\sin x - \cos x) \] To differentiate \( y \) with respect to \( x \), we use the chain rule. The derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). ### Step 2: Identify \( u \) and find \( \frac{du}{dx} \) Here, let: \[ u = \sin x - \cos x \] Now, we differentiate \( u \): \[ \frac{du}{dx} = \cos x + \sin x \] (The derivative of \( \sin x \) is \( \cos x \) and the derivative of \( -\cos x \) is \( \sin x \).) ### Step 3: Apply the chain rule Now, we can write: \[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} = \frac{1}{\sin x - \cos x} \cdot (\cos x + \sin x) \] Thus, we have: \[ \frac{dy}{dx} = \frac{\cos x + \sin x}{\sin x - \cos x} \] ### Step 4: Evaluate \( \frac{dy}{dx} \) at \( x = \frac{\pi}{2} \) Next, we substitute \( x = \frac{\pi}{2} \) into the derivative: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{2}} = \frac{\cos\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{2}\right)}{\sin\left(\frac{\pi}{2}\right) - \cos\left(\frac{\pi}{2}\right)} \] Calculating the values: - \( \cos\left(\frac{\pi}{2}\right) = 0 \) - \( \sin\left(\frac{\pi}{2}\right) = 1 \) Substituting these values: \[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{2}} = \frac{0 + 1}{1 - 0} = \frac{1}{1} = 1 \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( x = \frac{\pi}{2} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION -B|20 Videos
  • SAMPLE PAPER 6

    EDUCART PUBLICATION|Exercise SECTION - C |9 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos
  • SAMPLE PAPER 7

    EDUCART PUBLICATION|Exercise SECTION -C|10 Videos

Similar Questions

Explore conceptually related problems

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=sinx/(1+cosx) then (dy)/(dx)=

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=|cosx|+|sinx| , then (dy)/(dx)" at "x=(2pi)/(3) is

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sinx +cosx )^((1+tanx )),then (dy)/(dx) =