Home
Class 12
MATHS
If A=[(1,2,5),(1,-1,1),(2,3,-1)] and B=[...

If `A=[(1,2,5),(1,-1,1),(2,3,-1)]` and `B=[(2,2,-4),(-4,2,-4),(2,-1,5)]` evaluate AB.

A

`[(4,2,6),(-1,2,3),(6,4,9)]`

B

`[(4,1,13),(8,-1,5),(-10,11,-25)]`

C

`[(-2,1,3),(6,9,11),(-1,-7,25)]`

D

`[(2,9,13),(4,7,-11),(-10,11,-20)]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the product of matrices \( A \) and \( B \), we will follow the matrix multiplication rules. The matrices are defined as follows: \[ A = \begin{pmatrix} 1 & 2 & 5 \\ 1 & -1 & 1 \\ 2 & 3 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{pmatrix} \] ### Step 1: Determine the dimensions of the matrices Matrix \( A \) is a \( 3 \times 3 \) matrix and matrix \( B \) is also a \( 3 \times 3 \) matrix. Since the number of columns in \( A \) matches the number of rows in \( B \), we can multiply them. **Hint:** Always check the dimensions of the matrices before multiplication. ### Step 2: Calculate the elements of the resulting matrix \( AB \) The resulting matrix \( AB \) will also be a \( 3 \times 3 \) matrix. Each element \( c_{ij} \) of the resulting matrix \( C = AB \) is calculated as follows: \[ c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \] where \( n \) is the number of columns in \( A \) (or rows in \( B \)). ### Step 3: Calculate each element of the resulting matrix \( C \) 1. **Element \( c_{11} \)**: \[ c_{11} = 1 \cdot 2 + 2 \cdot (-4) + 5 \cdot 2 = 2 - 8 + 10 = 4 \] 2. **Element \( c_{12} \)**: \[ c_{12} = 1 \cdot 2 + 2 \cdot 2 + 5 \cdot (-1) = 2 + 4 - 5 = 1 \] 3. **Element \( c_{13} \)**: \[ c_{13} = 1 \cdot (-4) + 2 \cdot (-4) + 5 \cdot 5 = -4 - 8 + 25 = 13 \] 4. **Element \( c_{21} \)**: \[ c_{21} = 1 \cdot 2 + (-1) \cdot (-4) + 1 \cdot 2 = 2 + 4 + 2 = 8 \] 5. **Element \( c_{22} \)**: \[ c_{22} = 1 \cdot 2 + (-1) \cdot 2 + 1 \cdot (-1) = 2 - 2 - 1 = -1 \] 6. **Element \( c_{23} \)**: \[ c_{23} = 1 \cdot (-4) + (-1) \cdot (-4) + 1 \cdot 5 = -4 + 4 + 5 = 5 \] 7. **Element \( c_{31} \)**: \[ c_{31} = 2 \cdot 2 + 3 \cdot (-4) + (-1) \cdot 2 = 4 - 12 - 2 = -10 \] 8. **Element \( c_{32} \)**: \[ c_{32} = 2 \cdot 2 + 3 \cdot 2 + (-1) \cdot (-1) = 4 + 6 + 1 = 11 \] 9. **Element \( c_{33} \)**: \[ c_{33} = 2 \cdot (-4) + 3 \cdot (-4) + (-1) \cdot 5 = -8 - 12 - 5 = -25 \] ### Step 4: Write the resulting matrix \( C \) Combining all the calculated elements, we get: \[ C = AB = \begin{pmatrix} 4 & 1 & 13 \\ 8 & -1 & 5 \\ -10 & 11 & -25 \end{pmatrix} \] ### Final Result The product of matrices \( A \) and \( B \) is: \[ AB = \begin{pmatrix} 4 & 1 & 13 \\ 8 & -1 & 5 \\ -10 & 11 & -25 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 09

    EDUCART PUBLICATION|Exercise SECTIONS-B|19 Videos
  • SAMPLE PAPER 09

    EDUCART PUBLICATION|Exercise SECTIONS-C|8 Videos
  • SAMPLE PAPER - 5

    EDUCART PUBLICATION|Exercise Section - C|10 Videos
  • SAMPLE PAPER 11

    EDUCART PUBLICATION|Exercise SECTION- C|4 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B=[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B =[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :

If A = [(1,0,-4),(0,-1,2),(-1,2,1)] and B= [(5,8,4),(2,3,2),(1,2,1)] then find AB .

If A=[(1,-1,1),(1,-2,-2),(2,1,3)] and B=[(-4,4,4),(-7,1,3),(5,-3,-1)] Find AB and hence find the solution of the following system of linear equations.

If A=[(2,-3,1),(-2,3,4)] and B=[(2,5),(3,1),(4,2)] , then Find AB

If A=[{:(2,-1,3),(-4," "5,1):}]" and "B=[{:(2,3),(4,-2),(1,5):}] then find AB and BA. Show that ABneBA.

If A{:[(1,2,3,5,6),(4,-1,2,-3,1)]:}andB={:[(5,3),(2,1),(-3,5),(4,1),(1,2)]:} , then find AB and BA.

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'