Home
Class 12
MATHS
If A=[(2,1),(9,3)] and A^(2)-5A+7I=O, th...

If `A=[(2,1),(9,3)]` and `A^(2)-5A+7I=O`, then `A^(-1)=`

A

`[(3,-1),(9,2)]`

B

`(1)/(7)[(3,-1),(-9,2)]`

C

`(1)/(14)[(3,-1),(9,2)]`

D

`[(3,1),(9,2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) given the equation \( A^2 - 5A + 7I = O \), we will follow these steps: ### Step 1: Write down the given equation We start with the equation: \[ A^2 - 5A + 7I = O \] where \( O \) is the zero matrix. ### Step 2: Rearrange the equation Rearranging the equation gives us: \[ A^2 - 5A = -7I \] ### Step 3: Post-multiply by \( A^{-1} \) We will post-multiply both sides by \( A^{-1} \): \[ A^2 A^{-1} - 5A A^{-1} = -7I A^{-1} \] Using the property \( AA^{-1} = I \), we simplify: \[ A I - 5I = -7A^{-1} \] This simplifies to: \[ A - 5I = -7A^{-1} \] ### Step 4: Isolate \( A^{-1} \) Now, we isolate \( A^{-1} \): \[ 7A^{-1} = 5I - A \] Dividing both sides by 7 gives: \[ A^{-1} = \frac{1}{7}(5I - A) \] ### Step 5: Substitute the identity matrix and matrix \( A \) Substituting \( A = \begin{pmatrix} 2 & 1 \\ 9 & 3 \end{pmatrix} \) and the identity matrix \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \): \[ 5I = 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] Now, we calculate \( 5I - A \): \[ 5I - A = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 9 & 3 \end{pmatrix} = \begin{pmatrix} 5 - 2 & 0 - 1 \\ 0 - 9 & 5 - 3 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ -9 & 2 \end{pmatrix} \] ### Step 6: Calculate \( A^{-1} \) Now substituting back into the equation for \( A^{-1} \): \[ A^{-1} = \frac{1}{7} \begin{pmatrix} 3 & -1 \\ -9 & 2 \end{pmatrix} = \begin{pmatrix} \frac{3}{7} & -\frac{1}{7} \\ -\frac{9}{7} & \frac{2}{7} \end{pmatrix} \] ### Final Answer Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{3}{7} & -\frac{1}{7} \\ -\frac{9}{7} & \frac{2}{7} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 09

    EDUCART PUBLICATION|Exercise SECTIONS-B|19 Videos
  • SAMPLE PAPER - 5

    EDUCART PUBLICATION|Exercise Section - C|10 Videos
  • SAMPLE PAPER 11

    EDUCART PUBLICATION|Exercise SECTION- C|4 Videos

Similar Questions

Explore conceptually related problems

If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0 , then I=

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

If A=[31-12], show that A^(2)-5A+7I=O. Hence,find A^(-1)

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

if A=[{:(3,1),(-1,2):}], show that A^(2)-5A+7I=0.

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A=[31-12], show that A^(2)-5A+7I_(2)=O

If =[31-12], show that A^(2)-5A+7I_(2)=O

If A=[[3,1-1,2]],I=[[1,00,1]] and O=[[0,00,0]], show that A^(2)-5A+7I=0 Hence find A^(-1)