Home
Class 10
MATHS
Prove that sin^(2) A+ sin^(2) A tan^(2) ...

Prove that `sin^(2) A+ sin^(2) A tan^(2) A = tan^(2) A . `

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER SOLVED 10

    EDUCART PUBLICATION|Exercise PART - B ( SECTION - IV ) |8 Videos
  • SAMPLE PAPER SOLVED 10

    EDUCART PUBLICATION|Exercise PART - B ( SECTION - V ) |5 Videos
  • SAMPLE PAPER SOLVED 10

    EDUCART PUBLICATION|Exercise PART - A ( SECTION - II ) |17 Videos
  • SAMPLE PAPER SELF ASSESSMENT 11

    EDUCART PUBLICATION|Exercise Section (iv)|13 Videos
  • SAMPLE PAPER SOLVED 9

    EDUCART PUBLICATION|Exercise Part - B (Section -V) |4 Videos

Similar Questions

Explore conceptually related problems

If A+B = 90^(@) , then prove that sin^(2)A+sin^(2) B=1 tan^(2)A+cot^(2) B=0 .

prove that tan^(2)A-sin^(2)A=tan^(2)A*sin^(2)A

Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)

(tan ^ (2) A sin ^ (2) A) / (tan ^ (2) A-sin ^ (2) A) = 1

Prove :sin^(2)A cot^(2)A+cos^(2)A tan^(2)A=1

Prove that (i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) (ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B)

tan ^ (2) A-sin ^ (2) A = sin ^ (4) A sec ^ (4) A = tan ^ (2) A sin ^ (2) A

Prove that: (sinA - 2sin^(3)A)/(2 cos^(3)A - cosA) = tan A

Prove : (1-cos^(2)A) *sec ^(2)B + tan^(2)B (1- sin^(2)A) = sin^(2) A + tan^(2)B

Prove that : tan^(2)theta-sin^(2)theta=tan^(2)thetasin^(2)theta