Home
Class 12
MATHS
If A={:[("0" " "a" " "1"),("-1"" "b" ""1...

If `A={:[("0" " "a" " "1"),("-1"" "b" ""1"),("-1"" "c" ""0")]:}` is a skew-symmetric
matrix, then the value of `(a+b+c)^(2)` is:

A

0

B

1

C

4

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \(a\), \(b\), and \(c\) in the skew-symmetric matrix \(A\) and then compute \((a + b + c)^2\). ### Step-by-step Solution: 1. **Understanding the Skew-Symmetric Matrix**: A matrix \(A\) is skew-symmetric if \(A^T = -A\), where \(A^T\) is the transpose of matrix \(A\). 2. **Write Down the Given Matrix**: The given skew-symmetric matrix is: \[ A = \begin{pmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{pmatrix} \] 3. **Find the Transpose of the Matrix**: The transpose \(A^T\) of matrix \(A\) is: \[ A^T = \begin{pmatrix} 0 & -1 & -1 \\ a & b & c \\ 1 & 1 & 0 \end{pmatrix} \] 4. **Set Up the Equation for Skew-Symmetry**: According to the definition of skew-symmetry, we have: \[ A^T = -A \] Therefore, \[ \begin{pmatrix} 0 & -1 & -1 \\ a & b & c \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -a & -1 \\ 1 & -b & -1 \\ 1 & 1 & 0 \end{pmatrix} \] 5. **Equate Corresponding Elements**: From the above matrices, we can equate corresponding elements: - From the first row: \(0 = 0\) (no information) - From the second row: - \(a = -1\) - \(b = -b\) implies \(2b = 0\) so \(b = 0\) - \(c = -1\) - From the third row: \(1 = 1\) (no new information) 6. **Summarize the Values**: We have found: - \(a = -1\) - \(b = 0\) - \(c = -1\) 7. **Calculate \(a + b + c\)**: Now, we compute: \[ a + b + c = -1 + 0 - 1 = -2 \] 8. **Calculate \((a + b + c)^2\)**: Finally, we find: \[ (a + b + c)^2 = (-2)^2 = 4 \] ### Final Answer: The value of \((a + b + c)^2\) is \(4\). ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 3

    EDUCART PUBLICATION|Exercise Section - B|20 Videos
  • SAMPLE PAPER 3

    EDUCART PUBLICATION|Exercise Section - C|7 Videos
  • SAMPLE PAPER 2

    EDUCART PUBLICATION|Exercise Mathematics (Section - A) |1 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos

Similar Questions

Explore conceptually related problems

If [(0,2,1),(-2,0,-2),(-1,x,0)] is a skew symmetric matrix then find the value of x.

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

If [[0, a, b],[-2, 0, -9],[-3, 9, 0]] is a skew-symmetric matrix, then the values of a, b respectively are :

If A is a skew- symmetric matrix, then trace of A is: 1.) 1 2.) -1 3.) 0 4.)none of these

If the matrix P = [(7,a,4),(-1,3,b),(c, 6, 2)] is a symmetric matrix then the respective values of a ,b,c are

A is said to be skew-symmetric matrix if A^(T) = a)A b)-A c) A^2 d) A^3

If the matrix A=[0a32b-1c10] is skew- symmetric,find the values of a,b and

If A={:[(a-3,-5),(c+1,b-2)]:} is a skew =-symmetric matrix, then a+b-c = _______ .

If A is a 3xx3 skew-symmetric matrix,then trace of A is equal to -1 b.1 c.|A| d.none of these

[{:(2,0,0),(3,-1,0),(-7,3,1):}] is a skew symmetric matrix. True or False.