Home
Class 12
MATHS
If A=[(1,-1),(-1,1)], "then" " "A^(3)...

If `A=[(1,-1),(-1,1)], "then" " "A^(3)`

A

3A

B

`-3A`

C

4A

D

`-4A`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^3 \) for the matrix \( A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \[ 1 \cdot 1 + (-1) \cdot (-1) = 1 + 1 = 2 \] - First row, second column: \[ 1 \cdot (-1) + (-1) \cdot 1 = -1 - 1 = -2 \] - Second row, first column: \[ (-1) \cdot 1 + 1 \cdot (-1) = -1 - 1 = -2 \] - Second row, second column: \[ (-1) \cdot (-1) + 1 \cdot 1 = 1 + 1 = 2 \] Thus, we have: \[ A^2 = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we need to calculate \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \[ 2 \cdot 1 + (-2) \cdot (-1) = 2 + 2 = 4 \] - First row, second column: \[ 2 \cdot (-1) + (-2) \cdot 1 = -2 - 2 = -4 \] - Second row, first column: \[ (-2) \cdot 1 + 2 \cdot (-1) = -2 - 2 = -4 \] - Second row, second column: \[ (-2) \cdot (-1) + 2 \cdot 1 = 2 + 2 = 4 \] Thus, we have: \[ A^3 = \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix} \] ### Final Result The final result for \( A^3 \) is: \[ A^3 = \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 3

    EDUCART PUBLICATION|Exercise Section - B|20 Videos
  • SAMPLE PAPER 3

    EDUCART PUBLICATION|Exercise Section - C|7 Videos
  • SAMPLE PAPER 2

    EDUCART PUBLICATION|Exercise Mathematics (Section - A) |1 Videos
  • SAMPLE PAPER 4

    EDUCART PUBLICATION|Exercise SECTION - C|7 Videos