Home
Class 12
MATHS
If y =3 cos (log x) + 4 sin (log x), the...

If `y =3 cos (log x) + 4 sin (log x),` then `x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =`

A

y

B

`-y ^(2)`

C

`(1)/(y)`

D

`- y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given function \( y = 3 \cos(\log x) + 4 \sin(\log x) \) twice and then substitute it into the expression \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} \). ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the chain rule, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx}[3 \cos(\log x)] + \frac{d}{dx}[4 \sin(\log x)] \] Using the chain rule, we have: \[ \frac{d}{dx}[\cos(u)] = -\sin(u) \cdot \frac{du}{dx} \quad \text{and} \quad \frac{d}{dx}[\sin(u)] = \cos(u) \cdot \frac{du}{dx} \] where \( u = \log x \) and \( \frac{du}{dx} = \frac{1}{x} \). Thus, \[ \frac{dy}{dx} = 3 \cdot (-\sin(\log x)) \cdot \frac{1}{x} + 4 \cdot \cos(\log x) \cdot \frac{1}{x} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-3 \sin(\log x) + 4 \cos(\log x)}{x} \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{-3 \sin(\log x) + 4 \cos(\log x)}{x}\right) \] Using the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = -3 \sin(\log x) + 4 \cos(\log x) \) and \( v = x \). Calculating \( \frac{du}{dx} \): \[ \frac{du}{dx} = -3 \cos(\log x) \cdot \frac{1}{x} + 4 (-\sin(\log x)) \cdot \frac{1}{x} = \frac{-3 \cos(\log x) - 4 \sin(\log x)}{x} \] And \( \frac{dv}{dx} = 1 \). Now applying the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{x \left(\frac{-3 \cos(\log x) - 4 \sin(\log x)}{x}\right) - (-3 \sin(\log x) + 4 \cos(\log x)}{x^2}}{x^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{-3 \cos(\log x) - 4 \sin(\log x) + 3 \sin(\log x) - 4 \cos(\log x)}{x^2} \] Combining terms gives: \[ \frac{d^2y}{dx^2} = \frac{-7 \cos(\log x) - \sin(\log x)}{x^2} \] ### Step 3: Substitute into the expression Now we substitute \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) into the expression \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} \): \[ x^2 \frac{d^2y}{dx^2} = x^2 \left(\frac{-7 \cos(\log x) - \sin(\log x)}{x^2}\right) = -7 \cos(\log x) - \sin(\log x) \] And: \[ x \frac{dy}{dx} = x \left(\frac{-3 \sin(\log x) + 4 \cos(\log x)}{x}\right) = -3 \sin(\log x) + 4 \cos(\log x) \] Combining these: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = (-7 \cos(\log x) - \sin(\log x)) + (-3 \sin(\log x) + 4 \cos(\log x)) \] This simplifies to: \[ (-7 + 4) \cos(\log x) + (-1 - 3) \sin(\log x) = -3 \cos(\log x) - 4 \sin(\log x) \] ### Final Result Thus, we have: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = -y \]
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - B|20 Videos
  • CBSE TERM -1 SAMPLE PAPER 1

    EDUCART PUBLICATION|Exercise SECTION - C|4 Videos
  • SAMPLE PAPER - 5

    EDUCART PUBLICATION|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y = a cos (ln x)+ b sin (ln x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If y=3cos(log x)+4sin(log x), then show that x^(2)*(d^(2)y)/(dx^(2))+(dy)/(dx)+y=0

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=A cos(log x)+B sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

Prove that the differential equation for a cos(log x)+b sin(log x) is x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0