Home
Class 12
MATHS
int(0)^(pi//2)sin^(7)xdx...

`int_(0)^(pi//2)sin^(7)xdx`

Text Solution

Verified by Experts

The correct Answer is:
`c_1` is a constant is the general solution
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 6

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-B|8 Videos
  • MODEL PAPER 6

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C|7 Videos
  • MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long Answer type questions.)|9 Videos
  • MODEL PAPER 7

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (LONG ANSWER TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

Find int_(0)^(pi//2) sin^(7)x dx

int_(0)^(pi//2)sin^(9)xdx=

If a, b,c are the values of int_(0)^(pi//2)sin^(6)xdx,int_(0)^(pi)sin^(6)xdx,int_(0)^(2pi)sin^(6)xdx then the ascending order of a, b, c is

Show that int_(0)^(pi//2) sin^(n)xdx =int_(0)^(pi//2) cos^(n)x dx .

If a,b,c are the values of int_(0)^(pi//2)sin^(4)xdx,int_(0)^(pi//2)sin^(6)xdx,int_(0)^(pi//2)sin^(8)x dx then the ascending order of a,b, c is

Find int_(0)^(pi//2) sin^(4)x dx

int_(0)^(pi//2)cos^(7)xdx=

If a, b, c are the values of int_(0)^(pi//2)cos^(5)xdx,int_(0)^(pi//2)cos^(7)xdx,int_(0)^(pi//2)cos^(9)xdx then the descending order of a, b, c is

Prove the following int_(0)^(pi/2)sin^(3)xdx=2/3

int_(0)^(pi) sin^(7) x dx=