Home
Class 12
MATHS
Consider the following statements : 1...

Consider the following statements :
1. The determinants `|(1,a,bc),(1,b,ca),(1,c,ab)| and |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|` are not identically equal.
2. For `a gt 0, b gt 0, c gt 0` the value of the determinant `|(a,b,c),(b,c,a),(c,a,b)|` is always positive.
3. If `|(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|=|(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1)|`, then the two triangles with vertices `(x_(1),y_(1)), (x_(2),y_(2)), (x_(3), y_(3))` and `(a_(1),b_(1)), (a_(2), b_(2)), (a_(3), b_(3))` must be congruent. Which of the statement given above is/are correct?

A

Only (1)

B

Only (2)

C

Only (3)

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • NTA TPC JEE MAIN TEST 104

    NTA MOCK TESTS|Exercise MATHEMATICS (SUBJECTIVE NUMERICAL)|10 Videos
  • NTA TPC JEE MAIN TEST 103

    NTA MOCK TESTS|Exercise MATHEMATICS|29 Videos
  • NTA TPC JEE MAIN TEST 105

    NTA MOCK TESTS|Exercise MATHEMATICS |30 Videos

Similar Questions

Explore conceptually related problems

|(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)|=|(a_1,b_1,1),(a_2,b_2,1),(a_3,b_3,1)| then the two triangles with vertices (x_(1), y_(1)), (x_(2), y_(2)), (x_(3), y_(3)) and (a_(1), b_(1)), (a_(2), b_(2)), (a_(3), b_(3)) are

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If, in D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:}, the co-factor of a_(r)" is "A_(r), then , c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=

Show that |{:(ma_(1),b_(1),nc_(1)),(ma_(2),b_(2),nc_(2)),(ma_(3),b_(3),nc_(3)):}|=-mn|{:(c_(1),b_(1),a_(1)),(c_(2),b_(2),a_(2)),(c_(3),b_(3),a_(3)):}|

Cosnsider the system of equation a_(1)x+b_(1)y+c_(1)z=0, a_(2)x+b_(2)y+c_(2)z=0, a_(3)x+b_(3)y+c_(3)z=0 if |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0 , then the system has

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is