Home
Class 12
MATHS
If x^(3)+y^(3)=t +(4)/(t) and x^(6) +y^(...

If `x^(3)+y^(3)=t +(4)/(t) and x^(6) +y^(6) =t^(2) +(16)/(t^(2))` then find `x^(4)y^(2)(dy)/(dx)`.

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • NTA TPC JEE MAIN TEST 104

    NTA MOCK TESTS|Exercise MATHEMATICS (SUBJECTIVE NUMERICAL)|10 Videos
  • NTA TPC JEE MAIN TEST 103

    NTA MOCK TESTS|Exercise MATHEMATICS|29 Videos
  • NTA TPC JEE MAIN TEST 105

    NTA MOCK TESTS|Exercise MATHEMATICS |30 Videos

Similar Questions

Explore conceptually related problems

If x^(3)+y^(3)=t-(1)/(t) and x^(6)+y^(6)=t^(2)+(1)/(t^(2)) then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

" 5.If "x^(2)+y^(2)=t+(2)/(t)" and "x^(4)+y^(4)=t^(2)+(4)/(t^(2))" ,then

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=?

If x^(2)+y^(2)=(t+(1)/(t)) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)), then x^(3)y(dy)/(dx)=

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then prove that (dy)/(dx)=(1)/(x^(3)y)