Home
Class 12
PHYSICS
In young's double slit experiment the fr...

In young's double slit experiment the fringe width is 4mm. If the experiment is shifted to water of refractive index 4/3 the fringe width becomes (in mm)

A

3

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the fringe width in Young's double slit experiment when the setup is shifted to water, we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Formula for Fringe Width**: The fringe width (β) in Young's double slit experiment is given by the formula: \[ \beta = \frac{\lambda D}{d} \] where: - \( \lambda \) is the wavelength of light, - \( D \) is the distance from the slits to the screen, - \( d \) is the distance between the slits. 2. **Initial Fringe Width**: We are given that the initial fringe width in air is: \[ \beta = 4 \text{ mm} \] 3. **Effect of Medium on Wavelength**: When the experiment is shifted to a medium with a refractive index (μ), the wavelength of light changes. The new wavelength (λ') in the medium is given by: \[ \lambda' = \frac{\lambda}{\mu} \] where \( \mu = \frac{4}{3} \) for water. 4. **Calculate the New Wavelength**: Substituting the value of μ: \[ \lambda' = \frac{\lambda}{\frac{4}{3}} = \frac{3\lambda}{4} \] 5. **New Fringe Width in Water**: The new fringe width (β') in water can be calculated using the modified wavelength: \[ \beta' = \frac{\lambda' D}{d} = \frac{\left(\frac{3\lambda}{4}\right) D}{d} \] Since \( \beta = \frac{\lambda D}{d} \), we can express β' in terms of β: \[ \beta' = \frac{3}{4} \beta \] 6. **Substituting the Initial Fringe Width**: Now substituting the initial fringe width: \[ \beta' = \frac{3}{4} \times 4 \text{ mm} = 3 \text{ mm} \] 7. **Conclusion**: Therefore, the fringe width when the experiment is shifted to water becomes: \[ \beta' = 3 \text{ mm} \] ### Final Answer: The fringe width in water is **3 mm**.
Promotional Banner

Topper's Solved these Questions

  • WAVE OPTICS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I) (INTERFERENCE & YDSE) Level - II (ADVANCED) (straight objective Type Questions)|31 Videos
  • WAVE OPTICS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - I) (INTERFERENCE & YDSE) Level - II (ADVANCED) More than one correct answer type questions|4 Videos
  • WAVE MOTION AND SOUND

    AAKASH SERIES|Exercise PROBLEMS (LEVEL - II)|97 Videos
  • WAVES

    AAKASH SERIES|Exercise EXERCISE-III (Doppler effect :)|15 Videos

Similar Questions

Explore conceptually related problems

In Young.s double slit experiment the band width is minimum for the colour

In a Young's double slit experiment, the fringe width is found to be 0.4mm . If the whole apparatus is immersed in water of refractive index 4//3 without disturbing the geometrical arrangement, the new fringe width will be

In a Young's double slit experiment, the fringe width is found to be 0.4mm . If the whole apparatus is immersed in water of refractive index 4//3 without disturbing the geometrical arrangement, the new fringe width will be

In a Young's double-slit experment, the fringe width is beta . If the entire arrangement is now placed inside a liquid of refractive index mu , the fringe width will become

In a Young's double-slit experment, the fringe width is beta . If the entire arrangement is now placed inside a liquid of refractive index mu , the fringe width will become

In Young's experiment, fringe width was found to be 0.8 mm. If whole apparatus is immersed in water of refractive Index, mu = 4/3 , new fringe width is

In the Young’s double slit experiment, for which colour the fringe width is least

In young's double slit experiment, fringe order is represented by m, then fringe width is

With a monochromatic light, the fringe-width obtained in a Young’s double slit experiment is 0.133 cm. The whole set- up is immersed in water of refractive index 1.33, then the new fringe-width is

In a Young's double-slit experiment the fringe width is 0.2mm . If the wavelength of light used is increased by 10% and the separation between the slits if also increased by 10%, the fringe width will be

AAKASH SERIES-WAVE OPTICS-PROBLEMS (LEVEL - II)
  1. In young's double slit experiment the fringe width is 4mm. If the expe...

    Text Solution

    |

  2. In Young's double-slit experiment, the y-coordinate of central maxima ...

    Text Solution

    |

  3. In a Young's double slit interference experiment the fringe pattern is...

    Text Solution

    |

  4. The maximum intensity in Young.s double slit experiment is I0. Distanc...

    Text Solution

    |

  5. In a Young's double slit experiment the separation between slits is 2 ...

    Text Solution

    |

  6. White coherent light (400 nm-700 nm) is sent through the slits of a YD...

    Text Solution

    |

  7. Two slits 4.0 xx 10^(-6) m apart are illuminated by light of wavelengt...

    Text Solution

    |

  8. In the ideal double-slit experiment, when a glass-plate (refractive in...

    Text Solution

    |

  9. YDSE is conducted using light of wavelength 6000 Å to observe an inter...

    Text Solution

    |

  10. A transparent paper (refractive index = 1.45) of thickness 0.02 mm is ...

    Text Solution

    |

  11. In double slit experiment, a light of wavelength lamda = 600nm is used...

    Text Solution

    |

  12. A transparent paper sheet of thickness 0.03 mm and refractive index 1....

    Text Solution

    |

  13. Interference pattern with Young's double slits 1.5mm apart are formed ...

    Text Solution

    |

  14. The Young's double-slit experiment is done in a medium of refractive i...

    Text Solution

    |

  15. In the figure shown S(1)O-S(2)O=S(3)O-S(2)O=(lambda)/(4), Intensity at...

    Text Solution

    |

  16. In YDSE on screen P is the point of 5th order maxima was lying at t = ...

    Text Solution

    |

  17. Two coherent radio point sources that are separated by 2.0 m are radia...

    Text Solution

    |

  18. Two identical coherent sources are placed on a diameter of a circle of...

    Text Solution

    |

  19. The coherent point sources S(1) and S(2) vibrating in same phase emit ...

    Text Solution

    |

  20. The figure shows a transparent slab of length m placed in air whose re...

    Text Solution

    |

  21. In figure S is a monochromatic point source emitting light of waveleng...

    Text Solution

    |