Home
Class 12
PHYSICS
IF vecA xx vecB =vecC xx vecD and ...

IF ` vecA xx vecB =vecC xx vecD and vecA xx vecC = vecB xx vecD + ` while ` | vecA| ne |vecD| | vecB| ne | vecC|` show `( vecA - vecD )` that and ` ( vecB - vecC)` are parallel

Text Solution

AI Generated Solution

To show that the vectors \( \vec{A} - \vec{D} \) and \( \vec{B} - \vec{C} \) are parallel, we start with the given equations: 1. \( \vec{A} \times \vec{B} = \vec{C} \times \vec{D} \) 2. \( \vec{A} \times \vec{C} = \vec{B} \times \vec{D} \) We need to prove that \( (\vec{A} - \vec{D}) \) and \( (\vec{B} - \vec{C}) \) are parallel, which means we need to show that: \[ ...
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF VECTORS

    AAKASH SERIES|Exercise LONG ANSWER TYPE QUESTIONS|5 Videos
  • ELEMENTS OF VECTORS

    AAKASH SERIES|Exercise SHORT ANSWER TYPE QUESTIONS|10 Videos
  • ELECTROSTATICS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|5 Videos
  • GEOMETRICAL OPTICS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) INTEGER TYPE QUESTIONS)|10 Videos

Similar Questions

Explore conceptually related problems

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Given vecC = vecA xx vecB and vecD = vecB xx vecA . What is the angle between vecC and vecD ?

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of the following may be true ?

If vecA xx vecB = vecC+ vecD , them select the correct alternative:

if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 then (a) |veca|= |vecc| (b) |veca|= |vecb| (c) |vecb|=1 (d) |veca|=|vecb|= |vecc|=1

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vecd) is parallel to (vecb-vecc) .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kbvecb .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kvecb .