Home
Class 12
MATHS
If y=cosx.cos4x.cos8x, then what is (1)/...

If `y=cosx.cos4x.cos8x`, then what is `(1)/(y)(dy)/(dx)` at `x=(pi)/(4)` equal to?

A

`-1`

B

0

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = \cos x \cdot \cos 4x \cdot \cos 8x \) and we need to find \( \frac{1}{y} \cdot \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \), we can follow these steps: ### Step 1: Differentiate \( y \) We start with the expression for \( y \): \[ y = \cos x \cdot \cos 4x \cdot \cos 8x \] To differentiate \( y \), we can use the product rule. The derivative of \( y \) is: \[ \frac{dy}{dx} = \frac{d}{dx}(\cos x) \cdot \cos 4x \cdot \cos 8x + \cos x \cdot \frac{d}{dx}(\cos 4x) \cdot \cos 8x + \cos x \cdot \cos 4x \cdot \frac{d}{dx}(\cos 8x) \] ### Step 2: Calculate the derivatives Using the derivative of cosine: \[ \frac{d}{dx}(\cos kx) = -k \sin kx \] we can find each term: 1. \( \frac{d}{dx}(\cos x) = -\sin x \) 2. \( \frac{d}{dx}(\cos 4x) = -4 \sin 4x \) 3. \( \frac{d}{dx}(\cos 8x) = -8 \sin 8x \) Substituting these into the derivative: \[ \frac{dy}{dx} = (-\sin x) \cdot \cos 4x \cdot \cos 8x + \cos x \cdot (-4 \sin 4x) \cdot \cos 8x + \cos x \cdot \cos 4x \cdot (-8 \sin 8x) \] ### Step 3: Simplify \( \frac{dy}{dx} \) This can be rewritten as: \[ \frac{dy}{dx} = -\sin x \cos 4x \cos 8x - 4 \cos x \sin 4x \cos 8x - 8 \cos x \cos 4x \sin 8x \] ### Step 4: Evaluate \( y \) and \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \) Now we substitute \( x = \frac{\pi}{4} \): 1. \( \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \) 2. \( \cos 4 \cdot \frac{\pi}{4} = \cos \pi = -1 \) 3. \( \cos 8 \cdot \frac{\pi}{4} = \cos 2\pi = 1 \) Thus, \[ y = \frac{1}{\sqrt{2}} \cdot (-1) \cdot 1 = -\frac{1}{\sqrt{2}} \] Now, we calculate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\sin \frac{\pi}{4} \cdot (-1) \cdot 1 - 4 \cdot \frac{1}{\sqrt{2}} \cdot \sin \pi \cdot 1 - 8 \cdot \frac{1}{\sqrt{2}} \cdot (-1) \cdot 0 \] Since \( \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \) and \( \sin \pi = 0 \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{2}} + 0 + 0 = \frac{1}{\sqrt{2}} \] ### Step 5: Calculate \( \frac{1}{y} \cdot \frac{dy}{dx} \) Now we compute: \[ \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{-\frac{1}{\sqrt{2}}} \cdot \frac{1}{\sqrt{2}} = -\sqrt{2} \cdot \frac{1}{\sqrt{2}} = -1 \] ### Final Answer Thus, the value of \( \frac{1}{y} \cdot \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2021

    NDA PREVIOUS YEARS|Exercise MULTIPLE CHOICE QUESTIONS|120 Videos
  • SEQUENCE AND SERIES

    NDA PREVIOUS YEARS|Exercise MATH|148 Videos

Similar Questions

Explore conceptually related problems

If y=cos x cos 2x cos 4x cos 8x , then (dy)/(dx)" at "x=(pi)/(2) is

If y=tan^(-1)((sinx+cosx)/(cosx-sinx))," then "(dy)/(dx)" at "x=(pi)/(4)

If y=cos^(-1)(cosx),t h e n(dy)/(dx) at x=(5pi)/4 is equal to (a)1 (b)-1 (c)0 (d)4

If y=|cos^(3)x|+|sin^(3)x| then (dy)/(dx) at x=(3 pi)/(4)

If y=(sin^(2)x)/(1+cot x)+(cos^(2)x)/(1+tan x) then (dy)/(dx) at x=(pi)/(4) is

x(dy)/(dx)=y-cos((1)/(x))

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If : y=sinx[(1)/(cosx*cos2x)+(1)/(cos2x*cos3x)+(1)/(cos3x*cos4x)]," then: "(dy)/(dx)" at "x=(pi)/(4) is

Find (dy)/(dx) at x=1,y=(pi)/(4) if sin^(2)y+cos xy=k

NDA PREVIOUS YEARS-QUESTION PAPER 2021(I)-MULTIPLE CHOICE QUESTION
  1. If the position vectors of A and B are (sqrt2-1)hati-hatj and hati+(sq...

    Text Solution

    |

  2. If y=(1+x)(1+x^(2))(1+x^(4))(1+x^(8))(1+x^(16)) then what is (dy)/(dx)...

    Text Solution

    |

  3. If y=cosx.cos4x.cos8x, then what is (1)/(y)(dy)/(dx) at x=(pi)/(4) equ...

    Text Solution

    |

  4. Let f(x) be a polynomial function such that f(x)=x^(4). What is f'(1) ...

    Text Solution

    |

  5. What is lim(ntooo)(a^(n)+b^(n))/(a^(n)-b^(n)) where agtbgt1, equal to?

    Text Solution

    |

  6. Let f(x)={{:(1+(x)/(2k),0ltxlt2),(kx,2lexlt4):} If lim(xto2)f(x) exi...

    Text Solution

    |

  7. Consider the following statements in respect of f(x)=|x|-1: 1. f(x) ...

    Text Solution

    |

  8. If f(x)=([x])/(|x|),xne0, where [.] denotes the greatest integer funct...

    Text Solution

    |

  9. What is the range of the function f(x)=1-sinx defined on entire real l...

    Text Solution

    |

  10. What is the slope of the tangent of y=cos^(-1)(cosx) at x=-(pi)/(4)?

    Text Solution

    |

  11. What is the integral of f(x)=1+x^(2)+x^(4) with respect to x^(2)?

    Text Solution

    |

  12. Consider the following statements in respect of the function f(x)=x^(2...

    Text Solution

    |

  13. If f(x) satisfics f(1)=f(4), the what is int(1)^(4)f '(x)dx equal to?

    Text Solution

    |

  14. What is int(0)^(pi/(2))e^(ln(cosx))dx equal to?

    Text Solution

    |

  15. If intsqrt(1-sin2x)dx=Asinx+Bcosx+C, where 0ltxlt(pi)/(4), then which ...

    Text Solution

    |

  16. What is the order of the differential equation of all ellipses whose a...

    Text Solution

    |

  17. What is the degree of the differential equation of all circles touchin...

    Text Solution

    |

  18. What is the differential equation of y=A-(B)/(x)?

    Text Solution

    |

  19. What is int(0)^(pi) log (tan""(x)/(2)) dx equal to?

    Text Solution

    |

  20. Where does the tangent to the curve y=e^(x) at the point (0,1) meet x-...

    Text Solution

    |