Home
Class 14
MATHS
(.356xx.356-2xx.356xx.106+.106xx.106)/(....

`(.356xx.356-2xx.356xx.106+.106xx.106)/(.632xx.632+2xx.632xx.368+.368xx.368)=?`

A

0.25

B

0.0765

C

0.345

D

0.0625

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((0.356 \times 0.356 - 2 \times 0.356 \times 0.106 + 0.106 \times 0.106) / (0.632 \times 0.632 + 2 \times 0.632 \times 0.368 + 0.368 \times 0.368)\), we can use the formulas for the square of a binomial. ### Step-by-Step Solution: 1. **Identify the Numerator**: \[ 0.356 \times 0.356 - 2 \times 0.356 \times 0.106 + 0.106 \times 0.106 \] This can be recognized as the expansion of \((a - b)^2\) where \(a = 0.356\) and \(b = 0.106\). Thus, we can rewrite it as: \[ (0.356 - 0.106)^2 \] 2. **Calculate \(0.356 - 0.106\)**: \[ 0.356 - 0.106 = 0.250 \] Therefore, the numerator becomes: \[ (0.250)^2 = 0.0625 \] 3. **Identify the Denominator**: \[ 0.632 \times 0.632 + 2 \times 0.632 \times 0.368 + 0.368 \times 0.368 \] This can be recognized as the expansion of \((a + b)^2\) where \(a = 0.632\) and \(b = 0.368\). Thus, we can rewrite it as: \[ (0.632 + 0.368)^2 \] 4. **Calculate \(0.632 + 0.368\)**: \[ 0.632 + 0.368 = 1.000 \] Therefore, the denominator becomes: \[ (1.000)^2 = 1.000 \] 5. **Combine the Results**: Now we can substitute back into the expression: \[ \frac{(0.250)^2}{(1.000)^2} = \frac{0.0625}{1.000} = 0.0625 \] ### Final Answer: The final answer is: \[ 0.0625 \]
Promotional Banner

Topper's Solved these Questions

  • DATA ANALYSIS

    UPKAR PUBLICATION |Exercise QUESTION BANK|75 Videos
  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos

Similar Questions

Explore conceptually related problems

(-12)xx8xx5-2xx30xx12

[[{:(0.5xx0.5xx0.5+0.2xx0.2xx0.2),(0.3xx0.3xx0.3-3xx0.5xx0.3xx0.2):}]]/{:(0.5xx0.5+0.2xx0.2+0.3xx0.3),(0.5xx0.2-0.2xx0.3-0.5xx0.3):}=?

Simplify: (i) ((2.75xx2.75xx2.75-2.25xx.2.25xx2.25)/(2.75xx2.75+2.75xx2.25+2.25xx2.25))((0.0347xx0.0347xx0.0347+0.9653xx0.9653xx0.9653)/(0.0347xx0.0347-0.0347xx0.9653+0.9653xx0.9653))

-4xx(-2){2xx(-6)+3xx2xx6-4-4}

106 xx 106 + 94 xx 94 = ?

1xx3xx5xx7xx9xx...xx(2n-1)=

If 123 xx 356 =43788 then 1.23 xx 0.356 = ?

If 2xx6=1626,3xx7xx4=974, then 5xx6xx8=