Home
Class 14
MATHS
(0.125+0.027)/(0.5xx0.5-0.15+0.09)=?...

`(0.125+0.027)/(0.5xx0.5-0.15+0.09)=?`

A

0.08

B

1

C

0.2

D

0.8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((0.125 + 0.027) / (0.5 \times 0.5 - 0.15 + 0.09)\), we will follow these steps: ### Step 1: Calculate the numerator The numerator is \(0.125 + 0.027\). \[ 0.125 + 0.027 = 0.152 \] ### Step 2: Calculate the denominator The denominator is \(0.5 \times 0.5 - 0.15 + 0.09\). First, calculate \(0.5 \times 0.5\): \[ 0.5 \times 0.5 = 0.25 \] Now substitute this back into the denominator: \[ 0.25 - 0.15 + 0.09 \] Now, perform the subtraction and addition step by step: 1. \(0.25 - 0.15 = 0.10\) 2. \(0.10 + 0.09 = 0.19\) So, the denominator is \(0.19\). ### Step 3: Divide the numerator by the denominator Now we divide the result from Step 1 by the result from Step 2: \[ \frac{0.152}{0.19} \] To perform this division, we can convert both numbers into fractions: \[ 0.152 = \frac{152}{1000}, \quad 0.19 = \frac{19}{100} \] Now, dividing these fractions: \[ \frac{152}{1000} \div \frac{19}{100} = \frac{152}{1000} \times \frac{100}{19} = \frac{152 \times 100}{1000 \times 19} = \frac{152}{190} = \frac{76}{95} \approx 0.8 \] Thus, the final answer is: \[ \boxed{0.8} \]
Promotional Banner

Topper's Solved these Questions

  • DATA ANALYSIS

    UPKAR PUBLICATION |Exercise QUESTION BANK|75 Videos
  • H.C.F. AND L.C.M.

    UPKAR PUBLICATION |Exercise QUESTION BANK|82 Videos

Similar Questions

Explore conceptually related problems

(0.125 + 0.027)/(0.25 - 0.15 + 0.09) is equal to

The value of ((0.125+0.027)/(0.5xx0.5+0.09-0.15)) is (a) 0.08( b) 0.2( c) 0.8( d ) 1

Prove that (0.85xx 0.85xx 0.85 +0.15xx 0.15xx 0.15)/(0.85xx 0.85-0.85xx 0.15+0.15xx 0.15)=1 .

Prove that (0.85xx0.85xx0.85+0.15xx0.15xx0.15)/(0.85xx0.85-0.85xx0.15+0.15xx0.15)=1

[[{:(0.5xx0.5xx0.5+0.2xx0.2xx0.2),(0.3xx0.3xx0.3-3xx0.5xx0.3xx0.2):}]]/{:(0.5xx0.5+0.2xx0.2+0.3xx0.3),(0.5xx0.2-0.2xx0.3-0.5xx0.3):}=?

If A=(0.216 +0.008)/(0.36+0.04-0.12) and B=(0.729 - 0.027)/(0.81+ 0.09 +0.27) , then what is the value of (A^2+B^2)^2 ?