Home
Class 10
MATHS
The value of [sin^(2)theta +(1)/(1+tan^(...

The value of `[sin^(2)theta +(1)/(1+tan^(2)theta)]` is :

A

0

B

`cos theta`

C

`-sin theta`

D

1

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2022 TERM 1 SET 2 BASIC

    X BOARDS|Exercise SECTION B|20 Videos
  • QUESTION PAPER 2022 TERM 1 SET 2 BASIC

    X BOARDS|Exercise SECTION C (Case Study Based Question)|10 Videos
  • QUESTION PAPER 2022 TERM 1 SET 1 STANDARD

    X BOARDS|Exercise SECTION-C (CASE STUDY)|10 Videos
  • QUESTION PAPER 2022 TERM 1 SET 2 STANDARD

    X BOARDS|Exercise SECTION-C|10 Videos

Similar Questions

Explore conceptually related problems

sin^(2)theta+(1)/(1+tan^(2)theta)=1

If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

If tan theta+(1)/(tan theta)=2, find the value of tan^(2)theta+(1)/(tan^(2)theta)

What is the value of sin^(2)theta+(1)/(1+tan^(2)theta)?

The value of (1+tan^(2)theta)(1-sin^(2)theta) is

Prove that : sin^(2)theta+(1)/(1+tan^(2)theta)=1

Write the value of sin^(2)theta cos^(2)theta(1+tan^(2)theta)(1+cot^(2)theta).

If 3cos theta=1, find the value of (6sin^(2)theta+tan^(2)theta)/(4cos theta)

If sin theta = cos theta ,then the value of 2 tan^(2) theta + sin^(2) theta -1 is equal to