Home
Class 12
MATHS
The expression for cos (tan^(-1)x) is eq...

The expression for `cos (tan^(-1)x)` is equal to :

A

`1/sqrt(1 -x^2)`

B

`1/sqrt(1 + x^2)`

C

`sqrt(1 - x^2)/(2)`

D

`sqrt(1 - x^2)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION B|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos

Similar Questions

Explore conceptually related problems

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

"sin"("tan"^(-1)x) is equal to :

sin(tan^(-1)x),|x| le 1 is equal to :

The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x .

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

If ("cos"(x-y))/("cos"(x+y))+("cos"(z+t))/(cos(z-t))=0 , then the value of expression tanxtanytanztant is equal to (a) 1 (b) -1 (c) 2 (d) -2

The algebraic expression for f(x)=tan(sin^(-1)(cos("tan"^(-1)(x)/(2)))) is

The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x))) is equal to