Home
Class 12
MATHS
If A=((1,2),(3,4)), then the matrix A+A...

If `A=((1,2),(3,4))`, then the matrix `A+A^(T)` is:

A

Symmetric matrix

B

Skew-symmetric matrix

C

Diagonal matrix

D

Identity matrix

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION B|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos

Similar Questions

Explore conceptually related problems

If the matrix A=((2,3),(4,5)) , then show that A-A^(T) is a skew-symmetric matrix.

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

If {:A=[(-4,-1),(3,1)]:} , then the determint of the matrix (A^2016-2A^2015-A^2014) ,is

if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}] then find a matrix C if 2A+3B -4C is a zero matrix.

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A=[[t,t+1],[t-1,t]] is a matrix such that A A^(T) = I_(2) Then the trace of the matrix must be

If A=[[2, 3], [4, 5]] , prove that A-A^T is a skew-symmetric matrix.

if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C such that 2A-B+3c is a unit matrix.