Home
Class 12
MATHS
If y= tan^(-1) x , then :...

If ` y= tan^(-1) x ` , then :

A

`(1+ x^(2)) (d^(2) y)/(dx^(2)) + 2x""(dy)/(dx) =0`

B

`sqrt((1-x^(2)) (d^(2) y)/(dx^(2)) + 2x ""(dy)/(dx)) =0`

C

`(1- x^(2)) (d^(2) y)/(dx^(2)) + 2x""(dy)/(dx) =0`

D

`sqrt((1+x^(2)) (d^(2) y)/(dx^(2)) + 2x ""(dy)/(dx)) =0`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION B|8 Videos
  • QUESTION PAPER 2022 TERM 1

    ICSE|Exercise SECTION C|8 Videos
  • PROBABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |82 Videos
  • QUESTION PAPER-2018

    ICSE|Exercise Section -C|8 Videos

Similar Questions

Explore conceptually related problems

If tan^-1 y=4 tan^-1x, then y is infinite if

If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y_2+2x\ (1+x^2)y_1=2 .

If tan(x+y)=33 , and x= tan^(-1)3 , then: y=

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)) .

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If y=e^((tan^(-1)x) then find (dy)/(dx)

If y=tan^(-1)x , show that (1+x^2)(d^2y)/(dx^2)+2x(dy)/(dx)=0 .

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .