Home
Class 9
MATHS
If ((8+3sqrt(2))+(7-sqrt(2))-(3-4sqrt(2)...

If `((8+3sqrt(2))+(7-sqrt(2))-(3-4sqrt(2)))/(6-2sqrt(2))=a+bsqrt(2)`, then find the value of a and b respectively.

A

`(24)/(7),(15sqrt(2))/(7)`

B

`(-24)/(7),(-15)/(7)`

C

`(24)/(7),(15)/(6)`

D

`(24)/(7),(15)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{(8 + 3\sqrt{2}) + (7 - \sqrt{2}) - (3 - 4\sqrt{2})}{6 - 2\sqrt{2}} = a + b\sqrt{2}, \] we will simplify the numerator and denominator step by step. ### Step 1: Simplify the Numerator First, we simplify the expression in the numerator: \[ (8 + 3\sqrt{2}) + (7 - \sqrt{2}) - (3 - 4\sqrt{2}). \] Distributing the negative sign in the last term gives: \[ (8 + 3\sqrt{2}) + (7 - \sqrt{2}) - 3 + 4\sqrt{2}. \] Now, combine like terms: - The constant terms: \(8 + 7 - 3 = 12\). - The \(\sqrt{2}\) terms: \(3\sqrt{2} - \sqrt{2} + 4\sqrt{2} = (3 - 1 + 4)\sqrt{2} = 6\sqrt{2}\). Thus, the numerator simplifies to: \[ 12 + 6\sqrt{2}. \] ### Step 2: Simplify the Denominator Next, we simplify the denominator: \[ 6 - 2\sqrt{2}. \] ### Step 3: Write the Expression Now, we can rewrite the entire expression: \[ \frac{12 + 6\sqrt{2}}{6 - 2\sqrt{2}}. \] ### Step 4: Rationalize the Denominator To simplify this expression further, we will multiply the numerator and denominator by the conjugate of the denominator, which is \(6 + 2\sqrt{2}\): \[ \frac{(12 + 6\sqrt{2})(6 + 2\sqrt{2})}{(6 - 2\sqrt{2})(6 + 2\sqrt{2})}. \] Calculating the denominator first: \[ (6 - 2\sqrt{2})(6 + 2\sqrt{2}) = 6^2 - (2\sqrt{2})^2 = 36 - 8 = 28. \] Now, calculating the numerator: \[ (12 + 6\sqrt{2})(6 + 2\sqrt{2}) = 12 \cdot 6 + 12 \cdot 2\sqrt{2} + 6\sqrt{2} \cdot 6 + 6\sqrt{2} \cdot 2\sqrt{2}. \] Calculating each term: - \(12 \cdot 6 = 72\), - \(12 \cdot 2\sqrt{2} = 24\sqrt{2}\), - \(6\sqrt{2} \cdot 6 = 36\sqrt{2}\), - \(6\sqrt{2} \cdot 2\sqrt{2} = 12 \cdot 2 = 24\). Combining these gives: \[ 72 + (24\sqrt{2} + 36\sqrt{2}) + 24 = 96 + 60\sqrt{2}. \] ### Step 5: Final Expression Now we have: \[ \frac{96 + 60\sqrt{2}}{28}. \] We can simplify this by dividing each term by 28: \[ \frac{96}{28} + \frac{60\sqrt{2}}{28} = \frac{24}{7} + \frac{15\sqrt{2}}{7}. \] ### Conclusion Thus, we can express this as: \[ a + b\sqrt{2} \quad \text{where} \quad a = \frac{24}{7}, \, b = \frac{15}{7}. \] ### Final Values So, the values of \(a\) and \(b\) are: \[ a = \frac{24}{7}, \quad b = \frac{15}{7}. \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday mathematics |10 Videos
  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section |5 Videos
  • IMO QUESTION PAPER 2018 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2020 SET 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos

Similar Questions

Explore conceptually related problems

If (3sqrt(5)-6sqrt(7))-(2sqrt(5)-11sqrt(7))=asqrt(5)+bsqrt(7), then find the values of a and b.

(2+sqrt(3))/(2-sqrt(3))=a+bsqrt(3)

If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6) , then the value of a and b are respectively

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of a+b is

If (5+2sqrt3)/(7+4sqrt3)=a+bsqrt3 , then the value of a and b is

( sqrt(2) + sqrt(3)) /( sqrt(2 - sqrt(3)) = a + bsqrt(3) , find the a and b

(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=2-b sqrt(6) find b

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .