Home
Class 9
MATHS
Simplify : (i) If (4^(n+3)xx8^(3-n))/...

Simplify :
(i) If `(4^(n+3)xx8^(3-n))/((64^((-n)/(2)))^(2))=2^(9n)xx4^(3n)`, then find the value of 2n.
(ii) If `sqrt(x)+sqrt(x-sqrt(1-x))=1`, then find the value of x.

A

`{:(""(i),(ii)),(3//2,4//5):}`

B

`{:(""(i),(ii)),(2,3//5):}`

C

`{:(""(i),(ii)),(3,16//25):}`

D

`{:(""(i),(ii)),(3,9//25):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will break down each part of the question. ### Part (i) **Given:** \[ \frac{4^{(n+3)} \times 8^{(3-n)}}{(64^{(-n/2)})^2} = 2^{9n} \times 4^{3n} \] **Step 1:** Convert all bases to powers of 2. - \(4 = 2^2\) - \(8 = 2^3\) - \(64 = 2^6\) Now rewrite the equation: \[ \frac{(2^2)^{(n+3)} \times (2^3)^{(3-n)}}{((2^6)^{(-n/2)})^2} = 2^{9n} \times (2^2)^{3n} \] **Step 2:** Simplify the powers. - The numerator becomes: \[ (2^2)^{(n+3)} = 2^{2(n+3)} = 2^{2n + 6} \] \[ (2^3)^{(3-n)} = 2^{3(3-n)} = 2^{9 - 3n} \] So, the numerator is: \[ 2^{2n + 6} \times 2^{9 - 3n} = 2^{(2n + 6 + 9 - 3n)} = 2^{(15 - n)} \] - The denominator becomes: \[ (2^6)^{(-n/2)} = 2^{-3n} \] So, \[ (2^{-3n})^2 = 2^{-6n} \] Thus, the left-hand side simplifies to: \[ \frac{2^{15 - n}}{2^{-6n}} = 2^{(15 - n + 6n)} = 2^{(15 + 5n)} \] **Step 3:** Rewrite the right-hand side. The right-hand side becomes: \[ 2^{9n} \times (2^2)^{3n} = 2^{9n} \times 2^{6n} = 2^{(9n + 6n)} = 2^{15n} \] **Step 4:** Set the exponents equal to each other. Since the bases are the same, we can equate the exponents: \[ 15 + 5n = 15n \] **Step 5:** Solve for \(n\). Rearranging gives: \[ 15 = 15n - 5n \] \[ 15 = 10n \] \[ n = \frac{15}{10} = \frac{3}{2} \] **Step 6:** Find \(2n\). \[ 2n = 2 \times \frac{3}{2} = 3 \] ### Part (ii) **Given:** \[ \sqrt{x} + \sqrt{x - \sqrt{1 - x}} = 1 \] **Step 1:** Rearrange the equation. Move \(\sqrt{x}\) to the right side: \[ \sqrt{x - \sqrt{1 - x}} = 1 - \sqrt{x} \] **Step 2:** Square both sides. Squaring both sides gives: \[ x - \sqrt{1 - x} = (1 - \sqrt{x})^2 \] Expanding the right side: \[ x - \sqrt{1 - x} = 1 - 2\sqrt{x} + x \] **Step 3:** Simplify the equation. Subtract \(x\) from both sides: \[ -\sqrt{1 - x} = 1 - 2\sqrt{x} \] Multiply through by -1: \[ \sqrt{1 - x} = 2\sqrt{x} - 1 \] **Step 4:** Square both sides again. Squaring both sides gives: \[ 1 - x = (2\sqrt{x} - 1)^2 \] Expanding the right side: \[ 1 - x = 4x - 4\sqrt{x} + 1 \] Subtract 1 from both sides: \[ -x = 4x - 4\sqrt{x} \] Rearranging gives: \[ 5x = 4\sqrt{x} \] **Step 5:** Square both sides again. Squaring gives: \[ 25x^2 = 16x \] Rearranging gives: \[ 25x^2 - 16x = 0 \] Factoring out \(x\): \[ x(25x - 16) = 0 \] **Step 6:** Solve for \(x\). This gives: \[ x = 0 \quad \text{or} \quad 25x - 16 = 0 \Rightarrow x = \frac{16}{25} \] ### Final Answers: - For part (i), \(2n = 3\). - For part (ii), \(x = \frac{16}{25}\).
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday mathematics |10 Videos
  • IMO QUESTION PAPER 2018 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section |5 Videos
  • IMO QUESTION PAPER 2018 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2020 SET 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos

Similar Questions

Explore conceptually related problems

If ((243)^((n)/(5))3^(2n+1))/(9^(n)3^(n-1))=x, then the value of x is

If (sqrt(3))^(5) xx 9^(2) =3^(n) xx 3sqrt(3) , then what is the value of n?

If (n!)/((2!)xx(n-2)!): (n!)/((4!)xx(n-4)!)=2:1 , find the value of n.

If (x^(2)-4) is a factor of (mx^(3)-x^(2)-2x+n) ,then find the value of (2m+n)

if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n

For any n in N, the value of the expression sqrt(2+sqrt(2+sqrt(2+......n*n xx))) is

The value of lim_(n rarr oo)[3sqrt((n+1)^(2))-3sqrt((n-1)^(2))] is

If f(x)=(a^(x))/(a^(x)+sqrt(a)),(a>0), then find the value of sum_(r=1)^(2n1)2f((r)/(2n))