Home
Class 9
MATHS
If bar (x) is the mean of x(1), x(2), ...

If ` bar (x) `is the mean of ` x_(1), x_(2), . . . . , x_(n)`, then for ` a ne 0` then the mean of ` ax_(1), ax_(2) , ...., ax_(n), (x_(1))/( a), (x_(2))/(a), ...,(x_(n))/(a)` is _____

A

`(a + (1)/(a))bar(x)`

B

`(a + (1)/(a))(x)/(2)`

C

`(a + (1)/(a))(bar (x))/(n)`

D

`((a + (1)/(a))bar(x))/(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the mean of the given set of numbers: \( ax_1, ax_2, \ldots, ax_n, \frac{x_1}{a}, \frac{x_2}{a}, \ldots, \frac{x_n}{a} \). ### Step-by-Step Solution: 1. **Understand the Mean**: The mean \( \bar{x} \) of the values \( x_1, x_2, \ldots, x_n \) is given by: \[ \bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} \] 2. **Calculate the Mean of the New Set**: We need to find the mean of the new set of numbers: \[ ax_1, ax_2, \ldots, ax_n, \frac{x_1}{a}, \frac{x_2}{a}, \ldots, \frac{x_n}{a} \] This set has a total of \( 2n \) observations. 3. **Sum of the New Set**: The sum of the first \( n \) terms (i.e., \( ax_1, ax_2, \ldots, ax_n \)) is: \[ a(x_1 + x_2 + \ldots + x_n) = a \cdot n \bar{x} \] The sum of the second \( n \) terms (i.e., \( \frac{x_1}{a}, \frac{x_2}{a}, \ldots, \frac{x_n}{a} \)) is: \[ \frac{1}{a}(x_1 + x_2 + \ldots + x_n) = \frac{n \bar{x}}{a} \] 4. **Total Sum**: Now, we can combine these two sums: \[ \text{Total Sum} = a \cdot n \bar{x} + \frac{n \bar{x}}{a} \] 5. **Mean Calculation**: The mean of the new set is given by the total sum divided by the total number of observations: \[ \text{Mean} = \frac{a \cdot n \bar{x} + \frac{n \bar{x}}{a}}{2n} \] 6. **Factor Out \( n \bar{x} \)**: We can factor out \( n \bar{x} \): \[ \text{Mean} = \frac{n \bar{x} \left( a + \frac{1}{a} \right)}{2n} \] 7. **Simplify**: The \( n \) cancels out: \[ \text{Mean} = \frac{\bar{x} \left( a + \frac{1}{a} \right)}{2} \] ### Final Answer: Thus, the mean of the set \( ax_1, ax_2, \ldots, ax_n, \frac{x_1}{a}, \frac{x_2}{a}, \ldots, \frac{x_n}{a} \) is: \[ \frac{\bar{x} \left( a + \frac{1}{a} \right)}{2} \]
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics |4 Videos
  • STATISTICS

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section (HOTS)|3 Videos
  • SOF INTERNATIONAL MATHEMATICS OLYMPIAD

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • SURFACE AREAS AND VOLUMES

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section (HOTS)|3 Videos

Similar Questions

Explore conceptually related problems

If x is the mean of x_1, x_2, ..... ,x_n , then for a ne0 , the mean of ax_1, ax_2, .... ,ax_n,(x_1)/a,(x_2)/a,....,(x_n)/a is

If the arithmetic mean of the observations x_(1), x_(2), x_(3), ........, x_(n) is 1, then the arithmetic mean of (x_(1))/(k),(x_(2))/(k),(x_(3))/(k),......,(x_(n))/(k)(k gt 0) is

The mean of X_(1),x_(2) ,………, x_(n) is 10 ,then the mean of 5x_(1),5x_(21) ….. 5_(x)n is:

If the arithmetic mean of the observations x_(1),x_(2),x_(3),............x_(n) is 1, then the arithmetic mean of (x_(1))/(k),(x_(2))/(k),(x_(3))/(k),cdots......(x_(n))/(k),(k>0) is

Let barx be the mean of x_(1), x_(2), ………, x_(n) and bary be the mean of y_(1), y_(2),……….,y_(n) . If barz is the mean of x_(1), x_(2), ……………..x_(n), y_(1), y_(2), …………,y_(n) , then barz is equal to

If barx represents the mean of n observations x_(1), x_(2),………., x_(n) , then values of Sigma_(i=1)^(n) (x_(i)-barx)

If the mean of the set of numbers x_(1),x_(2),...x_(n) is bar(x), then the mean of the numbers x_(i)+2i,1<=i<=n is